No Arabic abstract
It is well-established by cognitive neuroscience that human perception of objects constitutes a complex process, where object appearance information is combined with evidence about the so-called object affordances, namely the types of actions that humans typically perform when interacting with them. This fact has recently motivated the sensorimotor approach to the challenging task of automatic object recognition, where both information sources are fused to improve robustness. In this work, the aforementioned paradigm is adopted, surpassing current limitations of sensorimotor object recognition research. Specifically, the deep learning paradigm is introduced to the problem for the first time, developing a number of novel neuro-biologically and neuro-physiologically inspired architectures that utilize state-of-the-art neural networks for fusing the available information sources in multiple ways. The proposed methods are evaluated using a large RGB-D corpus, which is specifically collected for the task of sensorimotor object recognition and is made publicly available. Experimental results demonstrate the utility of affordance information to object recognition, achieving an up to 29% relative error reduction by its inclusion.
Learning to understand and infer object functionalities is an important step towards robust visual intelligence. Significant research efforts have recently focused on segmenting the object parts that enable specific types of human-object interaction, the so-called object affordances. However, most works treat it as a static semantic segmentation problem, focusing solely on object appearance and relying on strong supervision and object detection. In this paper, we propose a novel approach that exploits the spatio-temporal nature of human-object interaction for affordance segmentation. In particular, we design an autoencoder that is trained using ground-truth labels of only the last frame of the sequence, and is able to infer pixel-wise affordance labels in both videos and static images. Our model surpasses the need for object labels and bounding boxes by using a soft-attention mechanism that enables the implicit localization of the interaction hotspot. For evaluation purposes, we introduce the SOR3D-AFF corpus, which consists of human-object interaction sequences and supports 9 types of affordances in terms of pixel-wise annotation, covering typical manipulations of tool-like objects. We show that our model achieves competitive results compared to strongly supervised methods on SOR3D-AFF, while being able to predict affordances for similar unseen objects in two affordance image-only datasets.
Optical Music Recognition (OMR) is an important and challenging area within music information retrieval, the accurate detection of music symbols in digital images is a core functionality of any OMR pipeline. In this paper, we introduce a novel object detection method, based on synthetic energy maps and the watershed transform, called Deep Watershed Detector (DWD). Our method is specifically tailored to deal with high resolution images that contain a large number of very small objects and is therefore able to process full pages of written music. We present state-of-the-art detection results of common music symbols and show DWDs ability to work with synthetic scores equally well as on handwritten music.
Affordance detection refers to identifying the potential action possibilities of objects in an image, which is a crucial ability for robot perception and manipulation. To empower robots with this ability in unseen scenarios, we first study the challenging one-shot affordance detection problem in this paper, i.e., given a support image that depicts the action purpose, all objects in a scene with the common affordance should be detected. To this end, we devise a One-Shot Affordance Detection Network (OSAD-Net) that firstly estimates the human action purpose and then transfers it to help detect the common affordance from all candidate images. Through collaboration learning, OSAD-Net can capture the common characteristics between objects having the same underlying affordance and learn a good adaptation capability for perceiving unseen affordances. Besides, we build a large-scale Purpose-driven Affordance Dataset v2 (PADv2) by collecting and labeling 30k images from 39 affordance and 103 object categories. With complex scenes and rich annotations, our PADv2 dataset can be used as a test bed to benchmark affordance detection methods and may also facilitate downstream vision tasks, such as scene understanding, action recognition, and robot manipulation. Specifically, we conducted comprehensive experiments on PADv2 dataset by including 11 advanced models from several related research fields. Experimental results demonstrate the superiority of our model over previous representative ones in terms of both objective metrics and visual quality. The benchmark suite is available at https://github.com/lhc1224/OSAD Net.
Rapid progress has been witnessed for human-object interaction (HOI) recognition, but most existing models are confined to single-stage reasoning pipelines. Considering the intrinsic complexity of the task, we introduce a cascade architecture for a multi-stage, coarse-to-fine HOI understanding. At each stage, an instance localization network progressively refines HOI proposals and feeds them into an interaction recognition network. Each of the two networks is also connected to its predecessor at the previous stage, enabling cross-stage information propagation. The interaction recognition network has two crucial parts: a relation ranking module for high-quality HOI proposal selection and a triple-stream classifier for relation prediction. With our carefully-designed human-centric relation features, these two modules work collaboratively towards effective interaction understanding. Further beyond relation detection on a bounding-box level, we make our framework flexible to perform fine-grained pixel-wise relation segmentation; this provides a new glimpse into better relation modeling. Our approach reached the $1^{st}$ place in the ICCV2019 Person in Context Challenge, on both relation detection and segmentation tasks. It also shows promising results on V-COCO.
This paper revisits human-object interaction (HOI) recognition at image level without using supervisions of object location and human pose. We name it detection-free HOI recognition, in contrast to the existing detection-supervised approaches which rely on object and keypoint detections to achieve state of the art. With our method, not only the detection supervision is evitable, but superior performance can be achieved by properly using image-text pre-training (such as CLIP) and the proposed Log-Sum-Exp Sign (LSE-Sign) loss function. Specifically, using text embeddings of class labels to initialize the linear classifier is essential for leveraging the CLIP pre-trained image encoder. In addition, LSE-Sign loss facilitates learning from multiple labels on an imbalanced dataset by normalizing gradients over all classes in a softmax format. Surprisingly, our detection-free solution achieves 60.5 mAP on the HICO dataset, outperforming the detection-supervised state of the art by 13.4 mAP