Do you want to publish a course? Click here

A branched transport limit of the Ginzburg-Landau functional

354   0   0.0 ( 0 )
 Added by Michael Goldman
 Publication date 2017
  fields Physics
and research's language is English
 Authors Sergio Conti




Ask ChatGPT about the research

We study the Ginzburg-Landau model of type-I superconductors in the regime of small external magnetic fields. We show that, in an appropriate asymptotic regime, flux patterns are described by a simplified branched transportation functional. We derive the simplified functional from the full Ginzburg-Landau model rigorously via $Gamma$-convergence. The detailed analysis of the limiting procedure and the study of the limiting functional lead to a precise understanding of the multiple scales contained in the model.



rate research

Read More

For each given $ngeq 2$, we construct a family of entire solutions $u_varepsilon (z,t)$, $varepsilon>0$, with helical symmetry to the 3-dimensional complex-valued Ginzburg-Landau equation begin{equation*} onumber Delta u+(1-|u|^2)u=0, quad (z,t) in mathbb{R}^2times mathbb{R} simeq mathbb{R}^3. end{equation*} These solutions are $2pi/varepsilon$-periodic in $t$ and have $n$ helix-vortex curves, with asymptotic behavior as $varepsilonto 0$ $$ u_varepsilon (z,t) approx prod_{j=1}^n Wleft( z- varepsilon^{-1} f_j(varepsilon t) right), $$ where $W(z) =w(r) e^{itheta} $, $z= re^{itheta},$ is the standard degree $+1$ vortex solution of the planar Ginzburg-Landau equation $ Delta W+(1-|W|^2)W=0 text{ in } mathbb{R}^2 $ and $$ f_j(t) = frac { sqrt{n-1} e^{it}e^{2 i (j-1)pi/ n }}{ sqrt{|logvarepsilon|}}, quad j=1,ldots, n. $$ Existence of these solutions was previously conjectured, being ${bf f}(t) = (f_1(t),ldots, f_n(t))$ a rotating equilibrium point for the renormalized energy of vortex filaments there derived, $$ mathcal W_varepsilon ( {bf f} ) :=pi int_0^{2pi} Big ( , frac{|log varepsilon|} 2 sum_{k=1}^n|f_k(t)|^2-sum_{j eq k}log |f_j(t)-f_k(t)| , Big ) mathrm{d} t, $$ corresponding to that of a planar logarithmic $n$-body problem. These solutions satisfy $$ lim_{|z| to +infty } |u_varepsilon (z,t)| = 1 quad hbox{uniformly in $t$} $$ and have nontrivial dependence on $t$, thus negatively answering the Ginzburg-Landau analogue of the Gibbons conjecture for the Allen-Cahn equation, a question originally formulated by H. Brezis.
94 - P.Collet 1993
We investigate the existence of a global semiflow for the complex Ginzburg-Landau equation on the space of bounded functions in unbounded domain. This semiflow is proven to exist in dimension 1 and 2 for any parameter values of the standard cubic Ginzburg-Landau equation. In dimension 3 we need some restrictions on the parameters but cover nevertheless some part of the Benjamin-Feijer unstable domain.
342 - Remi Carles 2012
We consider a system of two coupled ordinary differential equations which appears as an envelope equation in Bose-Einstein Condensation. This system can be viewed as a nonlinear extension of the celebrated model introduced by Landau and Zener. We show how the nonlinear system may appear from different physical models. We focus our attention on the large time behavior of the solution. We show the existence of a nonlinear scattering operator, which is reminiscent of long range scattering for the nonlinear Schrodinger equation, and which can be compared with its linear counterpart.
We describe rules for computing a homology theory of knots and links in $mathbb{R}^3$. It is derived from the theory of framed BPS states bound to domain walls separating two-dimensional Landau-Ginzburg models with (2,2) supersymmetry. We illustrate the rules with some sample computations, obtaining results consistent with Khovanov homology. We show that of the two Landau-Ginzburg models discussed in this context by Gaiotto and Witten one, (the so-called Yang-Yang-Landau-Ginzburg model) does not lead to topological invariants of links while the other, based on a model with target space equal to the universal cover of the moduli space of $SU(2)$ magnetic monopoles, will indeed produce a topologically invariant theory of knots and links.
122 - William Borrelli 2021
In this paper we prove the convergence of solutions to discrete models for binary waveguide arrays toward those of their formal continuum limit, for which we also show the existence of localized standing waves. This work rigorously justifies formal arguments and numerical simulations present in the Physics literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا