Do you want to publish a course? Click here

Probing Proton Spin Structure: A Measurement of g2p at Four-momentum Transfer of 2 to 6 GeV^2

77   0   0.0 ( 0 )
 Added by James Maxwell
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Spin Asymmetries of the Nucleon Experiment investigated the spin structure of the proton via inclusive electron scattering at the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA. A double--polarization measurement of polarized asymmetries was performed using the University of Virginia solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries $A_1$ and $A_2$, and spin structure functions $g_1$ and $g_2$. Polarized electrons of energies of 4.7 and 5.9 GeV were scattered to be viewed by a novel, non-magnetic array of detectors observing a four-momentum transfer range of 2 to 6 GeV$^2$. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function $g_2$, which we have measured as a function of $x$ and $W$ in four $Q^2$ bins.



rate research

Read More

A new measurement of the parity violating asymmetry in elastic electron scattering on hydrogen at backward angles and at a four momentum transfer of Q^2=0.22 (GeV/c)^2 is reported here. The measured asymmetry is A_LR=(-17.23 +- 0.82_stat +-0.89_syst) ppm. The Standard Model prediction assuming no strangeness is A_0=(-15.87 +- 1.22) ppm. In combination with previous results from measurements at forward angles, it it possible to disentangle for the first time the strange electric and magnetic form factors at this momentum transfer, G_E^s(0.22)=0.050 +- 0.038 +- 0.019 and G_M^s(0.22)=-0.14 +- 0.11 +- 0.11.
The spin-structure functions $g_1$ and $g_2$, and the spin-dependent partial cross-section $sigma_mathrm{TT}$ have been extracted from the polarized cross-sections differences, $Delta sigma_{parallel}hspace{-0.06cm}left( u,Q^{2}right)$ and $Delta sigma_{perp}hspace{-0.06cm}left( u,Q^{2}right)$ measured for the $vec{^textrm{3}textrm{He}}(vec{textrm{e}},textrm{e})textrm{X}$ reaction, in the E97-110 experiment at Jefferson Lab. Polarized electrons with energies from 1.147 to 4.404 GeV were scattered at angles of 6$^{circ}$ and 9$^{circ}$ from a longitudinally or transversely polarized $^{3}$He target. The data cover the kinematic regions of the quasi-elastic, resonance production and beyond. From the extracted spin-structure functions, the first moments $overline{Gamma_1}hspace{-0.06cm}left(Q^{2}right)$, $Gamma_2hspace{-0.06cm}left(Q^{2}right)$ and $I_{mathrm{TT}}hspace{-0.06cm}left(Q^{2}right)$ are evaluated with high precision for the neutron in the $Q^2$ range from 0.035 to 0.24~GeV$^{2}$. The comparison of the data and the chiral effective field theory predictions reveals the importance of proper treatment of the $Delta$ degree of freedom for spin observables.
Spin transfer observables for the strangeness-production reaction Antiproton-Proton -> Antilambda-Lambda have been measured by the PS185 collaboration using a transversely-polarized frozen-spin target with an antiproton beam momentum of 1.637 GeV/c at the Low Energy Antiproton Ring at CERN. This measurement investigates observables for which current models of the reaction near threshold make significantly differing predictions. Those models are in good agreement with existing measurements performed with unpolarized particles in the initial state. Theoretical attention has focused on the fact that these models produce conflicting predictions for the spin-transfer observables D_{nn} and K_{nn}, which are measurable only with polarized target or beam. Results presented here for D_{nn} and K_{nn} are found to be in disagreement with predictions from existing models. These results also underscore the importance of singlet-state production at backward angles, while current models predict complete or near-complete triplet-state dominance.
The GEp-III and GEp-2$gamma$ experiments, carried out in Jefferson Labs Hall C from 2007-2008, consisted of measurements of polarization transfer in elastic electron-proton scattering at momentum transfers of $Q^2 = 2.5, 5.2, 6.8,$ and $8.54$ GeV$^2$. These measurements were carried out to improve knowledge of the proton electromagnetic form factor ratio $R = mu_p G_E^p/G_M^p$ at large values of $Q^2$ and to search for effects beyond the Born approximation in polarization transfer observables at $Q^2 = 2.5$ GeV$^2$. The final results of both experiments were reported in a recent archival publication. A full reanalysis of the data from both experiments was carried out in order to reduce the systematic and, for the GEp-2$gamma$ experiment, statistical uncertainties. This technical note provides additional details of the final analysis omitted from the main publication, including the final evaluation of the systematic uncertainties.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا