No Arabic abstract
Current LHC results indicate a possible enhancement in the production of Higgs bosons in association with top quarks (tth) over the Standard Model (SM) expectations, suggesting an increase in the top Yukawa coupling. To explain these results, we study the effect of adding to the SM a small set of vector-like partners of the top and bottom quarks with masses of order ~1 TeV. We consider Yukawa coupling matrices with vanishing determinant and show that then, Higgs production through gluon fusion is not affected by deviations in the top quark Yukawa coupling, and in fact depends only on deviations in the bottom quark Yukawa coupling. We call this scenario the Brane Higgs Limit, as it can emerge naturally in models of warped extra-dimensions with all matter fields in the bulk, except the Higgs (although it could also occur in 4D scenarios with vector-like quarks and special flavor symmetries forcing the vanishing of the Yukawa determinants). We show that the scenario is highly predictive for all Higgs production/decay modes, making it easily falsifiable, maybe even at the LHC RUN 2 with higher luminosity.
The Higgs boson is produced at the LHC through gluon fusion at roughly the Standard Model rate. New colored fermions, which can contribute to $ggrightarrow h$, must have vector-like interactions in order not to be in conflict with the experimentally measured rate. We examine the size of the corrections to single and double Higgs production from heavy vector-like fermions in $SU(2)_L$ singlets and doublets and search for regions of parameter space where double Higgs production is enhanced relative to the Standard Model prediction. We compare production rates and distributions for double Higgs production from gluon fusion using an exact calculation, the low energy theorem (LET), where the top quark and the heavy vector-like fermions are taken to be infinitely massive, and an effective theory (EFT) where top mass effects are included exactly and the effects of the heavy fermions are included to ${cal O}(1/M^2_X)$. Unlike the LET, the EFT gives an extremely accurate description of the kinematic distributions for double Higgs production.
Vector-like quarks (VLQs) that are partners of the heavy top and bottom quarks are predicted in many extensions of the Standard Model (SM). We explore the possibility that these states could explain not only the longstanding anomaly in the forward-backward asymmetry in $b$-quark production at LEP, $A_{rm FB}^b $, but also the more recent $sim 2sigma$ deviation of the cross section for the associated Higgs production with top quark pairs at the LHC, $sigma(ppto tbar t H)$. Introducing three illustrative models for VLQs with different representations under the SM gauge group, we show that the two anomalies can be resolved while satisfying all other theoretical and experimental constraints. In this case, the three different models predict VLQ states in the $1-2$ TeV mass range that can be soon probed at the LHC. In a second step, we discuss the sensitivity on the VLQ masses and couplings that could be obtained by means of a percent level accuracy in the measurement of ratios of partial Higgs decay widths, in particular $Gamma(H ! to! gammagamma)/Gamma(H ! to! ZZ^*)$ and $Gamma(H ! to ! bbar b)/Gamma(H ! to ! WW^*)$. We show that top and bottom VL partners with masses up to $sim 5$ TeV and exotic VLQs with masses in the $10$ TeV range can be probed at the high-luminosity LHC.
After the recent discovery of a neutral Higgs boson with a mass about 125 GeV, we assess the extend of discovery potential of future circular hadron collider (FCC-hh) for a charged Higgs boson in the bottom and top quark decay channel. The charged Higgs boson can be produced through the pp->h^{-}t+X process with a subsequent decay h^{-}->b bar{t} channel. This decay channel is particularly important for studying the charged Higgs boson heavier than the top quark. We consider an extension of the standard model Higgs sector, namely two Higgs doublet model (2HDM), and perform a dedicated signal significance analysis to test this channel for the FCC-hh running at the center of mass energy of 100 TeV and the integrated luminosity of 1 ab^{-1} (initial) and 30 ab^{-1} (ultimate). We find that an important part of the parameter spaces of two Higgs doublet model are examinable at the FCC-hh.
We demonstrate that the multi-top productions efficiently probe the CP-property of top-Higgs interaction and the Higgs-boson width at the LHC. The four top-quark production alone can exclude a purely CP-odd top-quark Yukawa coupling at the 13~TeV LHC with an integrated luminosity of $430~{rm fb}^{-1}$, regardless the size of the Yukawa coupling. Combining the single Higgs-boson production, the $tbar{t}H$ associated production and the four top-quark production, we show that the CP-phase of the top-quark Yukawa coupling and the Higgs-boson width can be stringently bounded at the LHC with integrated luminosities of $300~{rm fb}^{-1}$ and $3000~{rm fb}^{-1}$.
We present searches for massive top and bottom quark partners at CMS using LHC pp collision data collected at centre-of-mass energy $sqrt{s} = 8$ TeV. Such partners can be found in models predicting vector-like quarks to solve the hierarchy problem and stabilize the Higgs boson mass. The searches span a range of final states containing several lepton and jet multiplicities, and limits were set on mass and production cross sections as a function of branching ratios.