Do you want to publish a course? Click here

Terahertz spectroscopy of crystal-field transitions in magnetoelectric TmAl3(BO3)4

129   0   0.0 ( 0 )
 Added by Andrei Pimenov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dynamic magnetic properties of magnetoelectric TmAl3(BO3)4 borate have been investigated by terahertz spectroscopy. Crystal field (CF) transitions within the ground multiplet 3H6 of Tm3+ ions are observed and they are identified as magnetic-dipole transitions from the ground singlet A1 to the next excited doublet E of Tm3+ ions. Unexpected fine structure of the transitions is detected at low temperatures. The new modes are assigned to local distortions of the sites with D3 symmetry by Bi3+ impurities, which resulted in the splitting of A1 -> E transition. Two types of locally distorted sites are identified and investigated. The main contribution to the static magnetic susceptibility is shown to be determined by the matrix elements of the observed magnetic transitions. We demonstrate that even in case of local distortions the symmetry of the undistorted crystal is recovered for magnetic and for quadratic magnetoelectric susceptibilities.



rate research

Read More

We report high-resolution optical absorption spectra for NdFe3(BO3)4 trigonal single crystal which is known to exhibit a giant magnetoelectric effect below the temperature of magnetic ordering TN = 33 K. The analysis of the temperature-dependent polarized spectra reveals the energies and, in some cases, symmetries and exchange splittings of Nd3+ 84 Kramers doublets. We perform crystal-field calculations starting from the exchange-charge model, obtain a set of six real crystal-field parameters, and calculate wave functions and magnetic g-factors. In particular, the values g(perpendicular) = 2.385, g(parallel) = 1.376 were found for the Nd3+ ground-state doublet. We obtain Bloc=7.88 T and |JFN|= 0.48 K for the values of the local effective magnetic field at liquid helium temperatures at the Nd3+ site and the Nd - Fe exchange integral, respectively, using the experimentally measured Nd3+ ground-state splitting of 8.8 cm-1. To check reliability of our set of crystal field parameters we model the magnetic susceptibility data from literature. A dimer containing two nearest-neighbor iron ions in the spiral chain is considered to partly account for quasi-one-dimensional properties of iron borates, and then the mean-field approximation is used. The results of calculations with the exchange parameters for Fe3+ ions Jnn = -6.25 K (intra-chain interactions) and Jnnn = -1.92 K (inter-chain interactions) obtained from fitting agree well with the experimental data.
Comprehensive studies of magnetic properties of GdCr3(BO3)4 single crystal have been carried out. The integrals of intrachain and interchain exchange interactions in the chromium subsystem have been determined and the strength of Cr-Gd exchange interaction has been estimated. The values of the exchange field and the effective magnetic anisotropy field of GdCr3(BO3)4 have been estimated. The electric polarization along the a axis in the longitudinal geometry of the experiment has been detected. Correlations between the electric polarization and the magnetization of the studied compound have been found. The spin-reorientation phase transition in the magnetically ordered state has been found. This transition exists for the external magnetic field applied along any crystallographic direction and the transition field depends weakly on the direction of the field. The nature of the spin-reorientation phase transition has been discussed. Magnetic phase diagram has been constructed and spin configurations for the low-field and high-field phases have been proposed.
We report a magnetic x-ray scattering study of the field-induced multiferroic GdFe3(BO3)4. Resonant x-ray magnetic scattering at the Gd LII,III edges indicates that the Gd moments order at TN ~ 37 K. The magnetic structure is incommensurate below TN, with the incommensurability decreasing monotonically with decreasing temperature until a transition to a commensurate magnetic phase is observed at T ~ 10 K. Both the Gd and Fe moments undergo a spin reorientation transition at TSR ~ 9 K such that the moments are oriented along the crystallographic c axis at low temperatures. With magnetic field applied along the a axis, our measurements suggest that the field-induced polarization phase has a commensurate magnetic structure with Gd moments rotated ~45 degrees toward the basal plane, which is similar to the magnetic structure of the Gd subsystem observed in zero field between 9 and 10 K, and the Fe subsystem has a ferromagnetic component in the basal plane.
We have studied the thermodynamic properties of single-crystalline TbFe3(BO3)4. Magnetization measurements have been carried out as a function of magnetic field (up to 50 T) and temperature up to 350K with the magnetic field both parallel and perpendicular to the trigonal c-axis of the crystal. The specific heat has been measured in the temperature range 2-300K with a magnetic field up to 9 T applied parallel to the c-axis. The data indicate a structural phase transition at 192 K and antiferromagnetic spin ordering at 40 K. A Schottky anomaly is present in the specific heat data around 20 K, arising due to two low-lying energy levels of the Tb3+ ions being split by f-d coupling. Below TN magnetic fields parallel to the c-axis drive a spin-flop phase transition, which is associated with a large magnetization jump. The highly anisotropic character of the magnetic susceptibility is ascribed mainly to the Ising-like behavior of the Tb3+ ions in the trigonal crystal field. We describe our results in the framework of an unified approach which is based on mean-field approximation and crystal-field calculations.
Complex experimental and theoretical study of the magnetic, magnetoelectric, and magnetoelastic properties of neodymium iron borate NdFe3(BO3)4 along various crystallographic directions have been carried out in strong pulsed magnetic fields up to 230 kOe in a temperature range of 4.2-50 K. It has been found that neodymium iron borate, as well as gadolinium iron borate, is a multiferroic. It has much larger (above 3 10^(-4) C/m^2) electric polarization controlled by the magnetic field and giant quadratic magnetoelectric effect. The exchange field between the rare-earth and iron subsystems (~50 kOe) has been determined for the first time from experimental data. The theoretical analysis based on the magnetic symmetry and quantum properties of the Nd ion in the crystal provides an explanation of an unusual behavior of the magnetoelectric and magnetoelastic properties of neodymium iron borate in strong magnetic fields and correlation observed between them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا