Do you want to publish a course? Click here

A Multi-Ringed, Modestly-Inclined Protoplanetary Disk around AA Tau

96   0   0.0 ( 0 )
 Added by Ryan Loomis
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

AA Tau is the archetype for a class of stars with a peculiar periodic photometric variability thought to be related to a warped inner disk structure with a nearly edge-on viewing geometry. We present high resolution ($sim$0.2) ALMA observations of the 0.87 and 1.3~mm dust continuum emission from the disk around AA Tau. These data reveal an evenly spaced three-ringed emission structure, with distinct peaks at 0.34, 0.66, and 0.99, all viewed at a modest inclination of 59.1$^{circ}pm$0.3$^{circ}$ (decidedly not edge-on). In addition to this ringed substructure, we find non-axisymmetric features including a `bridge of emission that connects opposite sides of the innermost ring. We speculate on the nature of this `bridge in light of accompanying observations of HCO$^+$ and $^{13}$CO (J=3--2) line emission. The HCO$^+$ emission is bright interior to the innermost dust ring, with a projected velocity field that appears rotated with respect to the resolved disk geometry, indicating the presence of a warp or inward radial flow. We suggest that the continuum bridge and HCO$^+$ line kinematics could originate from gap-crossing accretion streams, which may be responsible for the long-duration dimming of optical light from AA Tau.



rate research

Read More

We report the discovery of a dwarf protoplanetary disk around the star XZ Tau B that shows all the features of a classical transitional disk but on a much smaller scale. The disk has been imaged with the Atacama Large Millimeter/Submillimeter Array (ALMA), revealing that its dust emission has a quite small radius of ~ 3.4 au and presents a central cavity of ~ 1.3 au in radius that we attribute to clearing by a compact system of orbiting (proto)planets. Given the very small radii involved, evolution is expected to be much faster in this disk (observable changes in a few months) than in classical disks (observable changes requiring decades) and easy to monitor with observations in the near future. From our modeling we estimate that the mass of the disk is large enough to form a compact planetary system.
We present long-baseline Atacama Large Millimeter/submillimeter Array (ALMA) observations of the 870 micron continuum emission from the nearest gas-rich protoplanetary disk, around TW Hya, that trace millimeter-sized particles down to spatial scales as small as 1 AU (20 mas). These data reveal a series of concentric ring-shaped substructures in the form of bright zones and narrow dark annuli (1-6 AU) with modest contrasts (5-30%). We associate these features with concentrations of solids that have had their inward radial drift slowed or stopped, presumably at local gas pressure maxima. No significant non-axisymmetric structures are detected. Some of the observed features occur near temperatures that may be associated with the condensation fronts of major volatile species, but the relatively small brightness contrasts may also be a consequence of magnetized disk evolution (the so-called zonal flows). Other features, particularly a narrow dark annulus located only 1 AU from the star, could indicate interactions between the disk and young planets. These data signal that ordered substructures on ~AU scales can be common, fundamental factors in disk evolution, and that high resolution microwave imaging can help characterize them during the epoch of planet formation.
AA Tau, a classical T Tauri star in the Taurus cloud, has been the subject of intensive photometric monitoring for more than two decades due to its quasi-cyclic variation in optical brightness. Beginning in 2011, AA Tau showed another peculiar variation -- its median optical though near-IR flux dimmed significantly, a drop consistent with a 4-mag increase in visual extinction. It has stayed in the faint state since.Here we present 4.7um CO rovibrational spectra of AA Tau over eight epochs, covering an eleven-year time span, that reveal enhanced 12CO and 13CO absorption features in the $J_{rm low}leqslant$13 transitions after the dimming. These newly appeared absorptions require molecular gas along the line of sight with T~500 K and a column density of log (N12CO)~18.5 cm^{-2}, with line centers that show a constant 6 km s$^{-1}$ redshift. The properties of the molecular gas confirm an origin in the circumstellar material. We suggest that the dimming and absorption are caused by gas and dust lifted to large heights by a magnetic buoyancy instability. This material is now propagating inward, and on reaching the star within a few years will be observed as an accretion outburst.
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the CO ($J$=2--1) line emission from the protoplanetary disk around T-Tauri star SU Aurigae (hereafter SU Aur). Previous observations in optical and near infrared wavelengths find a unique structure in SU Aur. One of the highlights of the observational results is that an extended tail-like structure is associated with the disk, indicating mass transfer from or into the disk. Here we report the discovery of the counterpart of the tail-like structure in CO gas extending more than 1000 au long. Based on geometric and kinematic perspectives, both of the disk and the tail-like structure components physically connect to each other. Several theoretical studies predicted the observed tail-like structure via the following possible scenarios, 1) a gaseous stream from the molecular cloud remnant, 2) collision with a (sub)stellar intruder or a gaseous blob from the ambient cloud, and 3) ejection of a planetary or brown dwarf mass object due to gravitational instability via multi-body gravitational interaction. Since the tail-like structures associated with the SU Aur disk is a new example following RW Aurigae, some disks may experience the internal or external interaction and drastically lose mass during disk evolution.
During the evolution of protoplanetary disks into planetary systems we expect to detect signatures that trace mechanisms such as planet-disk interaction. Protoplanetary disks display a large variety of structures in recently published high-spatial resolution images. However, the three-dimensional morphology of these disks is often difficult to infer from the two-dimensional projected images we observe. We spatially resolve the disk around HD 34282 using VLT/SPHERE in polarimetric imaging mode. We retrieve a profile for the height of the scattering surface to create a height-corrected deprojection, which simulates a face-on orientation. The disk displays a complex scattering surface. An inner clearing or cavity extending up to r<0.28 (88 au) is surrounded by a bright inclined (i = 56 deg) ring with a position angle of 119 deg. The center of this ring is offset from the star along the minor axis with 0.07, which can be explained with a disk-height of 26 au above the mid-plane. Outside this ring, beyond its south-eastern ansa we detect an azimuthal asymmetry or blob at r ~ 0.4. At larger separation, we detect an outer disk structure that can be fitted with an ellipse, compatible with a circular ring seen at r = 0.62 (190 au) and height of 77 au. After applying a height-corrected deprojection we see a circular ring centered on the star at 88 au, while what seemed to be a separate blob and outer ring, now both could be part of a single-armed spiral. Based on the current data it is not possible to conclude decisively whether $H_{rm scat} / r$ remains constant or whether the surface is flared with at most $H_{rm scat} propto r^{1.35}$ , although we favor the constant ratio based on our deprojections. The height-corrected deprojection allows a more detailed interpretation of the observed structures, after which we discern the detection of a single-armed spiral.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا