No Arabic abstract
In the present paper, using the technique of localization, we determine the center of the quantum Schr{o}dinger algebra $S_q$ and classify simple modules with finite-dimensional weight spaces over $S_q$, when $q$ is not a root of unity. It turns out that there are four classes of such modules: dense $U_q(mathfrak{sl}_2)$-modules, highest weight modules, lowest weight modules, and twisted modules of highest weight modules.
In this paper, we study weight representations over the Schr{o}dinger Lie algebra $mathfrak{s}_n$ for any positive integer $n$. It turns out that the algebra $mathfrak{s}_n$ can be realized by polynomial differential operators. Using this realization, we give a complete classification of irreducible weight $mathfrak{s}_n$-modules with finite dimensional weight spaces for any $n$. All such modules can be clearly characterized by the tensor product of $mathfrak{so}_n$-modules, $mathfrak{sl}_2$-modules and modules over the Weyl algebra.
In this paper, the property and the classification the simple Whittaker modules for the schr{o}dinger algebra are studied. A quasi-central element plays an important role in the study of Whittaker modules of level zero. For the Whittaker modules of nonzero level, our arguments use the Casimir element of semisimple Lie algebra $sl_2$ and the description of simple modules over conformal Galilei algebras by R. L{u}, V. Mazorchuk and K. Zhao.
$imath$quantum groups are generalizations of quantum groups which appear as coideal subalgebras of quantum groups in the theory of quantum symmetric pairs. In this paper, we define the notion of classical weight modules over an $imath$quantum group, and study their properties along the lines of the representation theory of weight modules over a quantum group. In several cases, we classify the finite-dimensional irreducible classical weight modules by a highest weight theory.
We calculate the first extension groups for finite-dimensional simple modules over an arbitrary generalized current Lie algebra, which includes the case of loop Lie algebras and their multivariable analogs.
Let ${mathcal W}_n$ be the Lie algebra of polynomial vector fields. We classify simple weight ${mathcal W}_n$-modules $M$ with finite weight multiplicities. We prove that every such nontrivial module $M$ is either a tensor module or the unique simple submodule in a tensor module associated with the de Rham complex on $mathbb C^n$.