Do you want to publish a course? Click here

The fuzziness of giant planets cores

56   0   0.0 ( 0 )
 Added by Ravit Helled
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Giant planets are thought to have cores in their deep interiors, and the division into a heavy-element core and hydrogen-helium envelope is applied in both formation and structure models. We show that the primordial internal structure depends on the planetary growth rate, in particular, the ratio of heavy elements accretion to gas accretion. For a wide range of likely conditions, this ratio is in one-to-one correspondence with the resulting post-accretion profile of heavy elements within the planet. This flux ratio depends sensitively on the assumed solid surface density in the surrounding nebula. We suggest that giant planets cores might not be distinct from the envelope and includes some hydrogen and helium, and the deep interior can have a gradual heavy-element structure. Accordingly, Jupiters core may not be well-defined. Accurate measurements of Jupiters gravitational field by Juno could put constraints on Jupiters core mass. However, as we suggest here, the definition of Jupiters core is complex, and the cores physical properties (mass, density) depend on the actual definition of the core and on its growth history.



rate research

Read More

Recent ALMA observations may indicate a surprising abundance of sub-Jovian planets on very wide orbits in protoplanetary discs that are only a few million years old. These planets are too young and distant to have been formed via the Core Accretion (CA) scenario, and are much less massive than the gas clumps born in the classical Gravitational Instability (GI) theory. It was recently suggested that such planets may form by the partial destruction of GI protoplanets: energy output due to the growth of a massive core may unbind all or most of the surrounding pre-collapse protoplanet. Here we present the first 3D global disc simulations that simultaneously resolve grain dynamics in the disc and within the protoplanet. We confirm that massive GI protoplanets may self-destruct at arbitrarily large separations from the host star provided that solid cores of mass around 10-20 Earth masses are able to grow inside them during their pre-collapse phase. In addition, we find that the heating force recently analysed by Masset and Velasco Romero (2017) perturbs these cores away from the centre of their gaseous protoplanets. This leads to very complicated dust dynamics in the protoplanet centre, potentially resulting in the formation of multiple cores, planetary satellites, and other debris such as planetesimals within the same protoplanet. A unique prediction of this planet formation scenario is the presence of sub-Jovian planets at wide orbits in Class 0/I protoplanetary discs.
301 - Tristan Guillot 2014
We review the interior structure and evolution of Jupiter, Saturn, Uranus and Neptune, and giant exoplanets with particular emphasis on constraining their global composition. Compared to the first edition of this review, we provide a new discussion of the atmospheric compositions of the solar system giant planets, we discuss the discovery of oscillations of Jupiter and Saturn, the significant improvements in our understanding of the behavior of material at high pressures and the consequences for interior and evolution models. We place the giant planets in our Solar System in context with the trends seen for exoplanets.
Remote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe. Here we describe the main scientific goals to be addressed by the future in situ exploration of Saturn, Uranus, and Neptune, placing the Galileo probe exploration of Jupiter in a broader context. An atmospheric entry probe targeting the 10-bar level would yield insight into two broad themes: i) the formation history of the giant planets and that of the Solar System, and ii) the processes at play in planetary atmospheres. The probe would descend under parachute to measure composition, structure, and dynamics, with data returned to Earth using a Carrier Relay Spacecraft as a relay station. An atmospheric probe could represent a significant ESA contribution to a future NASA New Frontiers or flagship mission to be launched toward Saturn, Uranus, and/or Neptune.
We present results from a radial-velocity survey of 373 giant stars at Lick Observatory, which started in 1999. The previously announced planets iota Dra b and Pollux b are confirmed by continued monitoring. The frequency of detected planetary companions appears to increase with metallicity. The star nu Oph is orbited by two brown dwarf companions with masses of 22.3 M_Jup and 24.5 M_Jup in orbits with a period ratio close to 6:1. It is likely that the two companions to nu Oph formed in a disk around the star.
The giant planet atmospheres exhibit alternating prograde (eastward) and retrograde (westward) jets of different speeds and widths, with an equatorial jet that is prograde on Jupiter and Saturn and retrograde on Uranus and Neptune. The jets are variously thought to be driven by differential radiative heating of the upper atmosphere or by intrinsic heat fluxes emanating from the deep interior. But existing models cannot account for the different flow configurations on the giant planets in an energetically consistent manner. Here a three-dimensional general circulation model is used to show that the different flow configurations can be reproduced by mechanisms universal across the giant planets if differences in their radiative heating and intrinsic heat fluxes are taken into account. Whether the equatorial jet is prograde or retrograde depends on whether the deep intrinsic heat fluxes are strong enough that convection penetrates into the upper troposphere and generates strong equatorial Rossby waves there. Prograde equatorial jets result if convective Rossby wave generation is strong and low-latitude angular momentum flux divergence owing to baroclinic eddies generated off the equator is sufficiently weak (Jupiter and Saturn). Retrograde equatorial jets result if either convective Rossby wave generation is weak or absent (Uranus) or low-latitude angular momentum flux divergence owing to baroclinic eddies is sufficiently strong (Neptune). The different speeds and widths of the off-equatorial jets depend, among other factors, on the differential radiative heating of the atmosphere and the altitude of the jets, which are vertically sheared. The simulations have closed energy and angular momentum balances that are consistent with observations of the giant planets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا