Do you want to publish a course? Click here

Retraction of dissolution front in natural porous media

113   0   0.0 ( 0 )
 Added by Yi Yang
 Publication date 2017
  fields Physics
and research's language is English
 Authors Yi Yang




Ask ChatGPT about the research

The dissolution of porous materials in a flow field shapes the morphologies of many geologic landscapes. Identifying the dissolution front, the interface between the reactive and the unreactive regions in a dissolving medium, is a prerequisite for studying dissolution kinetics. Despite its fundamental importance, the dynamics of a dissolution front in an evolving natural microstructure has never been reported. Here we show an unexpected spontaneous migration of the dissolution front against the pressure gradient of a flow field. This retraction stems from the infiltration instability induced surface generation, which can lead to a reactive surface dramatically greater than the ex situ geometric surface. The results are supported by a very good agreement between observations made with real time X-ray imaging and simulations based on static images of a rock determined by nanoCT. They both show that the in situ specific surface area of natural porous media is dependent on the flow field and reflects a balancing between surface generation and destruction. The reported dynamics challenge many long-held understanding of water-rock interactions and shed light on reconciling the discrepancies between field and laboratory measurements of reaction kinetics.



rate research

Read More

131 - Yi Yang 2017
When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is important in geologic carbon storage, where the dissolution of CO2 in water increases the acidity and produce microstructures significantly different from those in an intact reservoir. We demonstrate the controlling mechanism for the dissolution patterns in natural porous materials. This was done using numerical simulations based on high resolution digital models of North Sea chalk. We tested three model scenarios, and found that aqueous CO2 dissolve porous media homogeneously, leading to large breakthrough porosity. In contrast, CO2-free solution develops elongated convective channels in porous media, known as wormholes, and resulting in small breakthrough porosity. We further show that a homogeneous dissolution pattern appears because the sample size is smaller than the theoretical size of a developing wormhole. The result indicates that the presence of dissolved CO2 expands the reactive subvolume of a porous medium, and thus enhances the geochemical alteration of reservoir structures and might undermine the sealing integrity of caprocks when minerals dissolve.
72 - Yi Yang 2017
The tendency of irreversible processes to generate entropy is the ultimate driving force for the evolution of nature. In engineering, entropy production is often used as a measure of usable energy losses. In this study we show that the analysis of the entropy production patterns can help understand the vastly diversified experimental observations of water-rock interactions in natural porous media. We first present a numerical scheme for the analysis of entropy production in dissolving porous media. Our scheme uses a greyscale digital model of natural chalk obtained by X-ray nanotomography. Greyscale models preserve structural heterogeneities with very high fidelity, which is essential for simulating a system dominated by infiltration instability. We focus on the coupling between two types of entropy production: the percolative entropy generated by dissipating the kinetic energy of fluid flow and the reactive entropy that originates from the consumption of chemical free energy. Their temporal patterns pinpoint three stages of microstructural evolution. We then show that the regional mixing deteriorates infiltration instability by reducing local variations in reactant distribution. In addition, we show that the microstructural evolution can be particularly sensitive to the initially present transport heterogeneities when the global flowrate is small. This dependence on flowrate indicates that the need to resolve the structural features of a porous system is greater when the residence time of the fluid is long.
A reactive fluid dissolving the surrounding rock matrix can trigger an instability in the dissolution front, leading to spontaneous formation of pronounced channels or wormholes. Theoretical investigations of this instability have typically focused on a steadily propagating dissolution front that separates regions of high and low porosity. In this paper we show that this is not the only possible dissolutional instability in porous rocks; there is another instability that operates instantaneously on any initial porosity field, including an entirely uniform one. The relative importance of the two mechanisms depends on the ratio of the porosity increase to the initial porosity. We show that the inlet instability is likely to be important in limestone formations where the initial porosity is small and there is the possibility of a large increase in permeability. In quartz-rich sandstones, where the proportion of easily soluble material (e.g. carbonate cements) is small, the instability in the steady-state equations is dominant.
77 - Yi Yang 2017
Reactive infiltration instability (RII) drives the development of many natural and engineered flow systems. These are encountered e.g. in hydraulic fracturing, geologic carbon storage and well stimulation in enhanced oil recovery. The surface area of the rocks changes as the pore structure evolves. We combined a reactor network model with grey scale tomography to seek the morphological interpretation for differences among geometric, reactive and apparent surface areas of dissolving natural porous materials. The approach allowed us to delineate the experimentally convoluted variables and study independently the effects of initial geometry and macroscopic flowrate. Simulations based on North Sea chalk microstructure showed that geometric surface not only serves as the interface for water-rock interactions but also represents the regional transport heterogeneities that can be amplified indefinitely by dissolutive percolation. Hence, RII leads to channelization of the solid matrix, which results in fluid focusing and an increase in geometric surface area. Fluid focusing reduces the reactive surface area and the residence time of reactants, both of which amplify the differences in question, i.e. they are self-supporting. Our results also suggested that the growing and merging of microchannels near the fluid entrance leads to the macroscopic fast initial dissolution of chemically homogeneous materials.
We investigate the chemical dissolution of porous media using a network model in which the system is represented as a series of interconnected pipes with the diameter of each segment increasing in proportion to the local reactant consumption. Moreover, the topology of the network is allowed to change dynamically during the simulation: as the diameters of the eroding pores become comparable with the interpore distances, the pores are joined together thus changing the interconnections within the network. With this model, we investigate different growth regimes in an evolving porous medium, identifying the mechanisms responsible for the emergence of specific patterns. We consider both the random and regular network and study the effect of the network geometry on the patterns. Finally, we consider practically important problem of finding an optimum flow rate that gives a maximum increase in permeability for a given amount of reactant.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا