Do you want to publish a course? Click here

Fat flats in rank one manifolds

103   0   0.0 ( 0 )
 Added by Daniel J. Thompson
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We study closed non-positively curved Riemannian manifolds $M$ which admit `fat $k$-flats: that is, the universal cover $tilde M$ contains a positive radius neighborhood of a $k$-flat on which the sectional curvatures are identically zero. We investigate how the fat $k$-flats affect the cardinality of the collection of closed geodesics. Our first main result is to construct rank $1$ non-positively curved manifolds with a fat $1$-flat which corresponds to a twisted cylindrical neighborhood of a geodesic on $M$. As a result, $M$ contains an embedded closed geodesic with a flat neighborhood, but $M$ nevertheless has only countably many closed geodesics. Such metrics can be constructed on finite covers of arbitrary odd-dimensional finite volume hyperbolic manifolds. Our second main result is to prove a closing theorem for fat flats, which implies that a manifold $M$ with a fat $k$-flat contains an immersed, totally geodesic $k$-dimensional flat closed submanifold. This guarantees the existence of uncountably many closed geodesics when $k geq 2$. Finally, we collect results on thermodynamic formalism for the class of manifolds considered in this paper.



rate research

Read More

163 - Weisheng Wu 2021
In this article, we consider a closed rank one Riemannian manifold $M$ without focal points. Let $P(t)$ be the set of free-homotopy classes containing a closed geodesic on $M$ with length at most $t$, and $# P(t)$ its cardinality. We obtain the following Margulis-type asymptotic estimates: [lim_{tto infty}#P(t)/frac{e^{ht}}{ht}=1] where $h$ is the topological entropy of the geodesic flow. In the appendix, we also show that the unique measure of maximal entropy of the geodesic flow has the Bernoulli property.
Delaunay has shown that the Delaunay complex of a finite set of points $P$ of Euclidean space $mathbb{R}^m$ triangulates the convex hull of $P$, provided that $P$ satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be defined for arbitrary Riemannian manifolds. However, Delaunays genericity assumption no longer guarantees that the Delaunay complex will yield a triangulation; stronger assumptions on $P$ are required. A natural one is to assume that $P$ is sufficiently dense. Although results in this direction have been claimed, we show that sample density alone is insufficient to ensure that the Delaunay complex triangulates a manifold of dimension greater than 2.
We analyze two different fibrations of a link complement M constructed by McMullen-Taubes, and studied further by Vidussi. These examples lead to inequivalent symplectic forms on a 4-manifold X = S x M, which can be distinguished by the dimension of the primitive cohomologies of differential forms. We provide a general algorithm for computing the monodromies of the fibrations explicitly, which are needed to determine the primitive cohomologies. We also investigate a similar phenomenon coming from fibrations of a class of graph links, whose primitive cohomology provides information about the fibration structure.
We demonstrate how by using the intersection theory to calculate the cohomology of $G_2$-manifolds constructed by using the generalized Kummer construction. For one example we find the generators of the rational cohomology ring and describe the product structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا