Do you want to publish a course? Click here

Energy partitioning and electron momentum distributions in intense laser-solid interactions

69   0   0.0 ( 0 )
 Added by Joel Magnusson
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Producing inward orientated streams of energetic electrons by intense laser pulses acting on solid targets is the most robust and accessible way of transferring the laser energy to particles, which underlies numerous applications, ranging from TNSA to laboratory astrophysics. Structures with the scale of the laser wavelength can significantly enhance energy absorption, which has been in the center of attention in recent studies. In this article, we demonstrate and assess the effect of the structures for widening the angular distribution of generated energetic electrons. We analyse the results of PIC simulations and reveal several aspects that can be important for the related applications.



rate research

Read More

67 - Meng Wen , Yousef I. Salamin , 2019
In laser-solid interactions, electrons may be generated and subsequently accelerated to energies of the order-of-magnitude of the ponderomotive limit, with the underlying process dominated by direct laser acceleration. Breaking this limit, realized here by a radially-polarized laser pulse incident upon a wire target, can be associated with several novel effects. Three-dimensional Particle-In-Cell simulations show a relativistic intense laser pulse can extract electrons from the wire and inject them into the accelerating field. Anti-dephasing, resulting from collective plasma effects, are shown here to enhance the accelerated electron energy by two orders of magnitude compared to the ponderomotive limit. It is demonstrated that ultra-short radially polarized pulses produce super-ponderomotive electrons more efficiently than pulses of the linear and circular polarization varieties.
A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV.
The radiation pressure of next generation ultra-high intensity ($>10^{23}$ W/cm$^{2}$) lasers could efficiently accelerate ions to GeV energies. However, nonlinear quantum-electrodynamic effects play an important role in the interaction of these laser pulses with matter. Here we show that these effects may lead to the production of an extremely dense ($sim10^{24}$ cm$^{-3}$) pair-plasma which absorbs the laser pulse consequently reducing the accelerated ion energy and energy conversion efficiency by up to 30-50% & 50-65%, respectively. Thus we identify the regimes of laser-matter interaction where either ions are efficiently accelerated or dense pair-plasmas are produced as a guide for future experiments.
280 - R.H.H. Scott 2015
A novel scheme for the creation of a convergent, or focussing, fast-electron beam generated from ultra-high-intensity laser-solid interactions is described. Self-consistent particle-in-cell simulations are used to demonstrate the efficacy of this scheme in two dimensions. It is shown that a beam of fast-electrons of energy 500 keV - 3 MeV propagates within a solid-density plasma, focussing at depth. The depth of focus of the fast-electron beam is controlled via the target dimensions and focussing optics.
The propagation of intense laser pulses and the generation of high energy electrons from the underdense plasmas are investigated using two dimensional particle-in-cell simulations. When the ratio of the laser power and a critical power of relativistic self-focusing is the optimal value, it propagates stably and electrons have maximum energies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا