Do you want to publish a course? Click here

Dynamic defects in photonic Floquet topological insulators

75   0   0.0 ( 0 )
 Added by Christina J\\\"org
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Edge modes in topological insulators are known to be robust against defects. We investigate if this also holds true when the defect is not static, but varies in time. We study the influence of defects with time-dependent coupling on the robustness of the transport along the edge in a Floquet system of helically curved waveguides. Waveguide arrays are fabricated via direct laser writing in a negative tone photoresist. We find that single dynamic defects do not destroy the chiral edge current, even when the temporal modulation is strong. Quantitative numerical simulation of the intensity in the bulk and edge waveguides confirms our observation.



rate research

Read More

We consider a topological Floquet insulator consisting of two honeycomb arrays of identical waveguides having opposite helicities. The interface between the arrays supports two distinct topological edge states, which can be resonantly coupled by additional weak longitudinal refractive index modulation with a period larger than the helix period. In the presence of Kerr nonlinearity, such coupled edge states enable topological Bragg solitons. Theory and examples of such solitons are presented.
We describe topological edge solitons in a continuous dislocated Lieb array of helical waveguides. The linear Floquet spectrum of this structure is characterized by the presence of two topological gaps with edge states residing in them. A focusing nonlinearity enables families of topological edge solitons bifurcating from the linear edge states. Such solitons are localized both along and across the edge of the array. Due to the non-monotonic dependence of the propagation constant of the edge states on the Bloch momentum, one can construct topological edge solitons that either propagate in different directions along the same boundary or do not move. This allows us to study collisions of edge solitons moving in the opposite directions. Such solitons always interpenetrate each other without noticeable radiative losses; however, they exhibit a spatial shift that depends on the initial phase difference.
The recent realization of photonic topological insulators has brought the discovery of fundamentally new states of light and revolutionary applications such as non-reciprocal devices for photonic diodes and robust waveguides for light routing. The spatially distinguished layer pseudospin has attracted attention in two-dimensional electronic materials. Here we report layered photonic topological insulators based on all-dielectric bilayer photonic crystal slabs. The introduction of layer pseudospin offers more dispersion engineering capability, leading to the layer-polarized and layer-mixed photonic topological insulators. Their phase transition is demonstrated with a model Hamiltonian by considering the nonzero interlayer coupling. Layer-direction locking behavior is found in layer-polarized photonic topological insulators. High transmission is preserved in the bilayer domain wall between two layer-mixed photonic topological insulators, even when a large defect is introduced. Layered photonic topological insulators not only offer a route towards the observation of richer nontrivial phases, but also open a way for device applications in integrated photonics and information processing by using the additional layer pseudospin.
We propose a versatile framework to dynamically generate Floquet higher-order topological insulators by multi-step driving of topologically trivial Hamiltonians. Two analytically solvable examples are used to illustrate this procedure to yield Floquet quadrupole and octupole insulators with zero- and/or $pi$-corner modes protected by mirror symmetries. Furthermore, we introduce dynamical topological invariants from the full unitary return map and show its phase bands contain Weyl singularities whose topological charges form dynamical multipole moments in the Brillouin zone. Combining them with the topological index of Floquet Hamiltonian gives a pair of $mathbb{Z}_2$ invariant $ u_0$ and $ u_pi$ which fully characterize the higher-order topology and predict the appearance of zero- and $pi$-corner modes. Our work establishes a systematic route to construct and characterize Floquet higher-order topological phases.
We demonstrate the photonic Floquet topological insulator (PFTI) in an atomic vapor with nonlinear susceptibilities. The interference of three coupling fields splits the energy levels periodically to form a periodic refractive index structure with honeycomb symmetry that can be adjusted by the choice of frequency detunings and intensities of the coupling fields, which all affect the appearance of Dirac cones in the momentum space. When the honeycomb lattice sites are helically ordered along the propagation direction, we obtain a PFTI in the atomic vapor in which an obliquely incident beam moves along the zigzag edge without scattering energy into the PFTI, due to the confinement of the edge states. The appearance of Dirac cones and the formation of PFTI is strongly affected by the nonlinear susceptibilities; i.e. the PFTI can be shut off by the third-order nonlinear susceptibility and re-opened up by the fifth-order one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا