Any interpretation of the astrophysical neutrinos discovered by IceCube must accommodate a variety of multimessenger constraints. We address implications of these neutrinos being produced in transient sources, principally if buried within supernovae so that gamma rays are absorbed by the star. This would alleviate tension with the isotropic Fermi GeV background that >10 TeV neutrinos rival in detected energy flux. We find that IceCube data constrain transient properties, implying buried GeV-TeV electromagnetic emission near or exceeding canonical SN explosion energies of ~10^51 erg, indicative of an origin within superluminous SNe. TeV neutrino bursts with dozens of IceCube events -- which would be of great use for understanding r-process nucleosynthesis and more -- may be just around the corner if they are a primary component of the flux.