Do you want to publish a course? Click here

The Hilbert Space of Quantum Gravity Is Locally Finite-Dimensional

216   0   0.0 ( 0 )
 Added by Sean Carroll
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We argue in a model-independent way that the Hilbert space of quantum gravity is locally finite-dimensional. In other words, the density operator describing the state corresponding to a small region of space, when such a notion makes sense, is defined on a finite-dimensional factor of a larger Hilbert space. Because quantum gravity potentially describes superpo- sitions of different geometries, it is crucial that we associate Hilbert-space factors with spatial regions only on individual decohered branches of the universal wave function. We discuss some implications of this claim, including the fact that quantum field theory cannot be a fundamental description of Nature.



rate research

Read More

127 - T. Banks 2020
We investigate modifications of quantum mechanics (QM) that replace the unitary group in a finite dimensional Hilbert space with a finite group and determine the minimal sequence of subgroups necessary to approximate QM arbitrarily closely for general choices of Hamiltonian. This mathematical study reveals novel insights about t Hoofts Ontological Quantum Mechanics, and the derivation of statistical mechanics from quantum mechanics. We show that Kornyaks proposal to understand QM as classical dynamics on a Hilbert space of one dimension higher than that describing the universe, supplemented by a choice of the value of a naturally conserved quantum operator in that classical evolution can probably be a model of the world we observe.
In the investigation and resolution of the cosmological constant problem the inclusion of the dynamics of quantum gravity can be a crucial step. In this work we suggest that the quantum constraints in a canonical theory of gravity can provide a way of addressing the issue: we consider the case of two-dimensional quantum dilaton gravity non-minimally coupled to a U(1) gauge field, in the presence of an arbitrary number of massless scalar matter fields, intended also as an effective description of highly symmetrical higher-dimensional models. We are able to quantize the system non-perturbatively and obtain an expression for the cosmological constant Lambda in terms of the quantum physical states, in a generalization of the usual QFT approach. We discuss the role of the classical and quantum gravitational contributions to Lambda and present a partial spectrum of values for it.
120 - Hidenori Fukaya 2018
Gravity is difficult to quantize. This is a well-known fact but its reason is given simply by non-renormalizability of the Newton constant and little is discussed why among many quantum gauge theories, gravity is special. In this essay we try to treat the gravity as one of many gauge theories, and discuss how it is special and why it is difficult to quantize.
In quantum information theory, Fisher Information is a natural metric on the space of perturbations to a density matrix, defined by calculating the relative entropy with the unperturbed state at quadratic order in perturbations. In gravitational physics, Canonical Energy defines a natural metric on the space of perturbations to spacetimes with a Killing horizon. In this paper, we show that the Fisher information metric for perturbations to the vacuum density matrix of a ball-shaped region B in a holographic CFT is dual to the canonical energy metric for perturbations to a corresponding Rindler wedge R_B of Anti-de-Sitter space. Positivity of relative entropy at second order implies that the Fisher information metric is positive definite. Thus, for physical perturbations to anti-de-Sitter spacetime, the canonical energy associated to any Rindler wedge must be positive. This second-order constraint on the metric extends the first order result from relative entropy positivity that physical perturbations must satisfy the linearized Einsteins equations.
223 - I. Y. Park 2021
Gravity is perturbatively renormalizable for the physical states which can be conveniently defined via foliation-based quantization. In recent sequels, one-loop analysis was explicitly carried out for Einstein-scalar and Einstein-Maxwell systems. Various germane issues and all-loop renormalizability have been addressed. In the present work we make further progress by carrying out several additional tasks. Firstly, we present an alternative 4D covariant derivation of the physical state condition by examining gauge choice-independence of a scattering amplitude. To this end, a careful dichotomy between the ordinary, and large gauge symmetries is required and appropriate gauge-fixing of the ordinary symmetry must be performed. Secondly, vacuum energy is analyzed in a finite-temperature setup. A variant optimal perturbation theory is implemented to two-loop. The renormalized mass determined by the optimal perturbation theory turns out to be on the order of the temperature, allowing one to avoid the cosmological constant problem. The third task that we take up is examination of the possibility of asymptotic freedom in finite-temperature quantum electrodynamics. In spite of the debates in the literature, the idea remains reasonable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا