In this paper we study the vertex cut-trees of Galton-Watson trees conditioned to have $n$ leaves. This notion is a slight variation of Dieuleveuts vertex cut-tree of Galton-Watson trees conditioned to have $n$ vertices. Our main result is a joint Gromov-Hausdorff-Prokhorov convergence in the finite variance case of the Galton-Watson tree and its vertex cut-tree to Bertoin and Miermonts joint distribution of the Brownian CRT and its cut-tree. The methods also apply to the infinite variance case, but the problem to strengthen Dieuleveuts and Bertoin and Miermonts Gromov-Prokhorov convergence to Gromov-Hausdorff-Prokhorov remains open for their models conditioned to have $n$ vertices.