No Arabic abstract
Whether planetary nebulae (PNe) are predominantly the product of binary stellar evolution as some population synthesis models (PSM) suggest remains an open question. Around 50 short period binary central stars ($Psim1$ d) are known, but with only four with measured orbital periods over 10 d, our knowledge is severely incomplete. Here we report on the first discovery from a systematic SALT HRS survey for long period binary central stars. We find a 142 d orbital period from radial velocities of the central star of NGC~1360, HIP~16566. NGC~1360 appears to be the product of common-envelope (CE) evolution, with nebula features similar to post-CE PNe, albeit with an orbital period considerably longer than expected to be typical of post-CE PSM. The most striking feature is a newly-identified ring of candidate low-ionisation structures (LIS). Previous spatio-kinematic modelling of the nebula gives a nebula inclination of $30pm10$ deg, and assuming the binary nucleus is coplanar with the nebula, multi-wavelength observations best fit a more massive, evolved WD companion. A WD companion in a 142 d orbit is not the focus of many PSM, making NGC~1360 a valuable system with which to improve future PSM work. HIP~16566 is amongst many central stars in which large radial velocity variability was found by low-resolution surveys. The discovery of its binary nature may indicate long period binaries may be more common than PSM models predict.
The shaping of various morphological features of planetary nebulae (PNe) is increasingly linked to the role of binary central stars. Identifying a binary within a PN offers a powerful tool with which to directly investigate the formation mechanisms behind these features. The Etched Hourglass Nebula, MyCn 18, is the archetype for several binary-linked morphological features, yet it has no identified binary nucleus. It has the fastest jets seen in a PN of 630 km s$^{-1}$, a central star position offset from the nebula centre, and a bipolar nebula with a very narrow waist. Here we report on the Southern African Large Telescope (SALT) High Resolution Spectrograph (HRS) detection of radial velocity variability in the nucleus of MyCn 18 with an orbital period of $18.15pm0.04$ days and a semi-amplitude of $11.0pm0.3$ km s$^{-1}$. Adopting an orbital inclination of $38pm5$ deg and a primary mass of $0.6pm0.1$ $M_odot$ yields a secondary mass of $0.19pm0.05$ $M_odot$ corresponding to an M5V companion. The detached nature of the binary rules out a classical nova (CN) as the origin of the jets or the offset central star as hypothesised in the literature. Furthermore, scenarios that produce the offset central star during the AGB and that form narrow waist bipolar nebulae result in orbital separations 80--800 times larger than observed in MyCn 18. The inner hourglass and jets may have formed from part of the common envelope ejecta that remained bound to the binary system in a circumbinary disk, whereas the offset central star position may best be explained by proper motion. Detailed simulations of MyCn 18 are encouraged that are compatible with the binary nucleus to further investigate its complex formation history.
We present a detailed investigation of SBS1150+599A, a close binary star hosted by the planetary nebula PN G135.9+55.9 (TS01, Stasinska et al, 2009). The nebula, located in the Galactic halo, is the most oxygen-poor one known to date and is the only one known to harbor a double degenerate core. We present XMM-Newton observations of this object, which allowed the detection of the previously invisible component of the binary core, whose existence was inferred so far only from radial velocity and photometric variations. The parameters of the binary system were deduced from a wealth of information via three independent routes using the spectral energy distribution (from the infrared to X-rays), the light and radial velocity curves, and a detailed model atmosphere fitting of the stellar absorption features of the optical/UV component. We find that the cool component must have a mass of 0.54+/-0.2 Msun, an average effective temperature, Teff, of 58000+/-3000 K, a mean radius of 0.43+/-0.3 Rsun, a gravity log g=5.0+/-0.3, and that it nearly fills its Roche lobe. Its surface elemental abundances are found to be: 12 + log He/H = 10.95+/-0.04 dex, 12 + log C/H = 7.20+/-0.3 dex, 12 + log N/H < 6.92 and 12 + log O/H < 6.80, in overall agreement with the chemical composition of the planetary nebula. The hot component has Teff = 160-180 kK, a luminosity of about ~10e4 Lsun and a radius slightly larger than that of a white dwarf. It is probably bloated and heated as a result of intense accretion and nuclear burning on its surface in the past. The total mass of the binary system is very close to Chandrasekhar limit. This makes TS01 one of the best type Ia supernova progenitor candidates. We propose two possible scenarios for the evolution of the system up to its present stage.
The importance of long-period binaries on the formation and evolution of planetary nebulae is still rather poorly understood, in part due to the lack of central star systems known to comprise such long-period binaries. Here, we report on the latest results from the on-going Mercator-HERMES survey for variability in the central stars of planetary nebulae. We present a study of the central stars of NGC 1514, BD+30$^circ$623, the spectrum of which shows features associated with a hot nebular progenitor as well as a possible A-type companion. Cross-correlation of high-resolution HERMES spectra against synthetic spectra shows the system to be a highly eccentric ($esim0.5$), double-lined binary with a period of $sim$3300 days. Previous studies indicated that the cool component might be a Horizontal Branch star of mass $sim$0.55 M$_odot$ but the observed radial velocity amplitudes rule out such a low mass. Assuming the nebular symmetry axis and binary orbital plane are perpendicular, the data are more consistent with a post-main-sequence star ascending towards the Giant Branch. We also present the continued monitoring of the central star of LoTr 5, HD 112313, which has now completed one full cycle, allowing the orbital period (P$sim$2700 days) and eccentricity ($esim0.3$) to be derived. To date, the orbital periods of BD+30$^circ$623 and HD 112313 are the longest to have been measured spectroscopically in the central stars of planetary nebulae. Furthermore, these systems, along with BD+33$^circ$2642, comprise the only spectroscopic wide-binary central stars currently known.
The Chandra X-ray Observatory has detected relatively hard X-ray emission from the central stars of several planetary nebulae (PNe). A subset have no known late-type companions, making it very difficult to isolate which of several competing mechanisms may be producing the X-ray emission. The central star of NGC 2392 is one of the most vexing members, with substantial indirect evidence for a hot white dwarf (WD) companion. Here we report on the results of a radial velocity (RV) monitoring campaign of its central star with the HERMES echelle spectrograph of the Flemish 1.2 m Mercator telescope. We discover a single-lined spectroscopic binary with an orbital period of $1.902208pm0.000013$ d and a RV semi-amplitude of $9.96pm0.13$ km/s. The high degree of nebula ionisation requires a WD companion ($Mgtrsim0.6 M_odot$), which the mass-function supports at orbital inclinations $lesssim$7 deg, in agreement with the nebula orientation of 9 deg. The hard component of the X-ray spectrum may be explained by the companion accreting mass from the wind of the Roche lobe filling primary, while the softer component may be due to colliding winds. A companion with a stronger wind than the primary could produce the latter and would be consistent with models of the observed diffuse X-ray emission detected in the nebula. The diffuse X-rays may also be powered by the jets of up to 180 km/s and active accretion would imply that they could be the first active jets of a post-common-envelope PN, potentially making NGC 2392 an invaluable laboratory to study jet formation physics. The 1.9 d orbital period rules out a double-degenerate merger leading to a Type Ia supernova and the weak wind of the primary likely also precludes a single-degenerate scenario. We suggest that a hard X-ray spectrum, in the absence of a late-type companion, could be a powerful tool to identify accreting WD companions.
We present the discovery of a 3h5m orbital-period binary star at the heart of the planetary nebula M 3-1 - the shortest period photometrically-variable central star known and second only to V458 Vul, in general. Combined modelling of light and radial velocity curves reveals both components to be close to Roche-lobe-filling, strongly indicating that the central star will rapidly evolve to become a cataclysmic variable, perhaps experiencing a similar evolution to V458 Vul resulting in a nova eruption before the planetary nebula has fully dissipated. While the short orbital period and near Roche-lobe filling natures of both components make the central binary of M 3-1 an important test case with which to constrain the formation processes of cataclysmic variables, novae and perhaps even supernovae type Ia.