Do you want to publish a course? Click here

Quadratic approximation of slow factor of volatility in a Multi-factor Stochastic volatility Model

66   0   0.0 ( 0 )
 Added by Gifty Malhotra
 Publication date 2017
  fields Financial
and research's language is English




Ask ChatGPT about the research

In the present work, we propose a new multifactor stochastic volatility model in which slow factor of volatility is approximated by a parabolic arc. We retain ourselves to the perturbation technique to obtain approximate expression for European option prices. We introduce the notion of modified Black-Scholes price. We obtain a simplified expression for European option price which is perturbed around the modified Black-Scholes price and have also obtained the expression of modified price in terms of Black-Scholes price.



rate research

Read More

This paper studies a robust portfolio optimization problem under the multi-factor volatility model introduced by Christoffersen et al. (2009). The optimal strategy is derived analytically under the worst-case scenario with or without derivative trading. To illustrate the effects of ambiguity, we compare our optimal robust strategy with some strategies that ignore the information of uncertainty, and provide the corresponding welfare analysis. The effects of derivative trading to the optimal portfolio selection are also discussed by considering alternative strategies. Our study is further extended to the cases with jump risks in asset price and correlated volatility factors, respectively. Numerical experiments are provided to demonstrate the behavior of the optimal portfolio and utility loss.
In the classical model of stock prices which is assumed to be Geometric Brownian motion, the drift and the volatility of the prices are held constant. However, in reality, the volatility does vary. In quantitative finance, the Heston model has been successfully used where the volatility is expressed as a stochastic differential equation. In addition, we consider a regime switching model where the stock volatility dynamics depends on an underlying process which is possibly a non-Markov pure jump process. Under this model assumption, we find the locally risk minimizing pricing of European type vanilla options. The price function is shown to satisfy a Heston type PDE.
In this paper, a pricing formula for volatility swaps is delivered when the underlying asset follows the stochastic volatility model with jumps and stochastic intensity. By using Feynman-Kac theorem, a partial integral differential equation is obtained to derive the joint moment generating function of the previous model. Moreover, discrete and continuous sampled volatility swap pricing formulas are given by employing transform techniques and the relationship between two pricing formulas is discussed. Finally, some numerical simulations are reported to support the results presented in this paper.
230 - Ben Boukai 2021
We consider Hestons (1993) stochastic volatility model for valuation of European options to which (semi) closed form solutions are available and are given in terms of characteristic functions. We prove that the class of scale-parameter distributions with mean being the forward spot price satisfies Hestons solution. Thus, we show that any member of this class could be used for the direct risk-neutral valuation of the option price under Hestons SV model. In fact, we also show that any RND with mean being the forward spot price that satisfies Hestons option valuation solution, must be a member of a scale-family of distributions in that mean. As particular examples, we show that one-paramet
We propose a general, very fast method to quickly approximate the solution of a parabolic Partial Differential Equation (PDEs) with explicit formulas. Our method also provides equaly fast approximations of the derivatives of the solution, which is a challenge for many other methods. Our approach is based on a computable series expansion in terms of a small parameter. As an example, we treat in detail the important case of the SABR PDE for $beta = 1$, namely $partial_{tau}u = sigma^2 big [ frac{1}{2} (partial^2_xu - partial_xu) + u rho partial_xpartial_sigma u + frac{1}{2} u^2 partial^2_sigma u , big ] + kappa (theta - sigma) partial_sigma$, by choosing $ u$ as small parameter. This yields $u = u_0 + u u_1 + u^2 u_2 + ldots$, with $u_j$ independent of $ u$. The terms $u_j$ are explicitly computable, which is also a challenge for many other, related methods. Truncating this expansion leads to computable approximations of $u$ that are in closed form, and hence can be evaluated very quickly. Most of the other related methods use the time $tau$ as a small parameter. The advantage of our method is that it leads to shorter and hence easier to determine and to generalize formulas. We obtain also an explicit expansion for the implied volatility in the SABR model in terms of $ u$, similar to Hagans formula, but including also the {em mean reverting term.} We provide several numerical tests that show the performance of our method. In particular, we compare our formula to the one due to Hagan. Our results also behave well when used for actual market data and show the mean reverting property of the volatility.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا