Recent contributions address the problem of language coexistence as that of two species competing to aggregate speakers, thus focusing on the dynamics of linguistic traits across populations. They draw inspiration from physics and biology and share some underlying ideas -- e. g. the search for minimal schemes to explain complex situations or the notion that languages are extant entities in a societal context and, accordingly, that objective, mathematical laws emerge driving the aforementioned dynamics. Different proposals pay attention to distinct aspects of such systems: Some of them emphasize the distribution of the population in geographical space, others research exhaustively the role of bilinguals in idealized situations (e. g. isolated populations), and yet others rely extremely on equations taken unchanged from physics or biology and whose parameters bear actual geometrical meaning. Despite the sources of these models -- so unrelated to linguistics -- sound results begin to surface that establish conditions and make testable predictions regarding language survival within populations of speakers, with a decisive role reserved to bilingualism. Here we review the most recent works and their interesting outcomes stressing their physical theoretical basis, and discuss the relevance and meaning of the abstract mathematical findings for real-life situations.