No Arabic abstract
In this paper, we introduce transformations of deep rectifier networks, enabling the conversion of deep rectifier networks into shallow rectifier networks. We subsequently prove that any rectifier net of any depth can be represented by a maximum of a number of functions that can be realized by a shallow network with a single hidden layer. The transformations of both deep rectifier nets and deep residual nets are conducted to demonstrate the advantages of the residual nets over the conventional neural nets and the advantages of the deep neural nets over the shallow neural nets. In summary, for two rectifier nets with different depths but with same total number of hidden units, the corresponding single hidden layer representation of the deeper net is much more complex than the corresponding single hidden representation of the shallower net. Similarly, for a residual net and a conventional rectifier net with the same structure except for the skip connections in the residual net, the corresponding single hidden layer representation of the residual net is much more complex than the corresponding single hidden layer representation of the conventional net.
Two networks are equivalent if they produce the same output for any given input. In this paper, we study the possibility of transforming a deep neural network to another network with a different number of units or layers, which can be either equivalent, a local exact approximation, or a global linear approximation of the original network. On the practical side, we show that certain rectified linear units (ReLUs) can be safely removed from a network if they are always active or inactive for any valid input. If we only need an equivalent network for a smaller domain, then more units can be removed and some layers collapsed. On the theoretical side, we constructively show that for any feed-forward ReLU network, there exists a global linear approximation to a 2-hidden-layer shallow network with a fixed number of units. This result is a balance between the increasing number of units for arbitrary approximation with a single layer and the known upper bound of $lceil log(n_0+1)rceil +1$ layers for exact representation, where $n_0$ is the input dimension. While the transformed network may require an exponential number of units to capture the activation patterns of the original network, we show that it can be made substantially smaller by only accounting for the patterns that define linear regions. Based on experiments with ReLU networks on the MNIST dataset, we found that $l_1$-regularization and adversarial training reduces the number of linear regions significantly as the number of stable units increases due to weight sparsity. Therefore, we can also intentionally train ReLU networks to allow for effective loss-less compression and approximation.
We introduce a deep, generative autoencoder capable of learning hierarchies of distributed representations from data. Successive deep stochastic hidden layers are equipped with autoregressive connections, which enable the model to be sampled from quickly and exactly via ancestral sampling. We derive an efficient approximate parameter estimation method based on the minimum description length (MDL) principle, which can be seen as maximising a variational lower bound on the log-likelihood, with a feedforward neural network implementing approximate inference. We demonstrate state-of-the-art generative performance on a number of classic data sets: several UCI data sets, MNIST and Atari 2600 games.
While Graph Neural Networks (GNNs) are powerful models for learning representations on graphs, most state-of-the-art models do not have significant accuracy gain beyond two to three layers. Deep GNNs fundamentally need to address: 1). expressivity challenge due to oversmoothing, and 2). computation challenge due to neighborhood explosion. We propose a simple deep GNN, shallow sampler design principle to improve both the GNN accuracy and efficiency -- to generate representation of a target node, we use a deep GNN to pass messages only within a shallow, localized subgraph. A properly sampled subgraph may exclude irrelevant or even noisy nodes, and still preserve the critical neighbor features and graph structures. The deep GNN then smooths the informative local signals to enhance feature learning, rather than oversmoothing the global graph signals into just white noise. We theoretically justify why the combination of deep GNNs with shallow samplers yields the best learning performance. We then propose various sampling algorithms and neural architecture extensions to achieve good empirical results. On the largest public graph dataset, ogbn-papers100M, we achieve state-of-the-art accuracy with an order of magnitude reduction in hardware cost.
This paper addresses the problem of formally verifying desirable properties of neural networks, i.e., obtaining provable guarantees that neural networks satisfy specifications relating their inputs and outputs (robustness to bounded norm adversarial perturbations, for example). Most previous work on this topic was limited in its applicability by the size of the network, network architecture and the complexity of properties to be verified. In contrast, our framework applies to a general class of activation functions and specifications on neural network inputs and outputs. We formulate verification as an optimization problem (seeking to find the largest violation of the specification) and solve a Lagrangian relaxation of the optimization problem to obtain an upper bound on the worst case violation of the specification being verified. Our approach is anytime i.e. it can be stopped at any time and a valid bound on the maximum violation can be obtained. We develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of our general verification approach on a variety of verification tasks.
Existing generalization measures that aim to capture a models simplicity based on parameter counts or norms fail to explain generalization in overparameterized deep neural networks. In this paper, we introduce a new, theoretically motivated measure of a networks simplicity which we call prunability: the smallest emph{fraction} of the networks parameters that can be kept while pruning without adversely affecting its training loss. We show that this measure is highly predictive of a models generalization performance across a large set of convolutional networks trained on CIFAR-10, does not grow with network size unlike existing pruning-based measures, and exhibits high correlation with test set loss even in a particularly challenging double descent setting. Lastly, we show that the success of prunability cannot be explained by its relation to known complexity measures based on models margin, flatness of minima and optimization speed, finding that our new measure is similar to -- but more predictive than -- existing flatness-based measures, and that its predictions exhibit low mutual information with those of other baselines.