No Arabic abstract
We use new X-ray data obtained with the Nuclear Spectroscopic Telescope Array (NuSTAR), near-infrared (NIR) fluxes, and mid-infrared (MIR) spectra of a sample of 24 unobscured type 1 active galactic nuclei (AGN) to study the correlation between various hard X-ray bands between 3 and 80 keV and the infrared (IR) emission. The IR to X-ray correlation spectrum (IRXCS) shows a maximum at ~15-20 micron, coincident with the peak of the AGN contribution to the MIR spectra of the majority of the sample. There is also a NIR correlation peak at ~2 micron, which we associate with the NIR bump observed in some type 1 AGN at ~1-5 micron and is likely produced by nuclear hot dust emission. The IRXCS shows practically the same behaviour in all the X-ray bands considered, indicating a common origin for all of them. We finally evaluated correlations between the X-ray luminosities and various MIR emission lines. All the lines show a good correlation with the hard X-rays (rho>0.7), but we do not find the expected correlation between their ionization potentials and the strength of the IRXCS.
We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18um continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by biases. The MIR--X-ray correlation is nearly linear and within a factor of two independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (~ 10^45 erg/s) is indicated but not significant. Unobscured objects have, on average, an MIR--X-ray ratio that is only <= 0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log N_H < 23) actually show the highest MIR--X-ray ratio on average. Radio-loud objects show a higher mean MIR--X-ray ratio at low luminosities, while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low-luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates and double AGN do not show any deviation from the general behaviour. Finally, we show that the MIR--X-ray correlation can be used to verify the AGN nature of uncertain objects. Specifically, we give equations that allow to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the usefulness of the MIR--X-ray correlation as an empirical tool.
We use mid-infrared spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope, and compare them with 21 higher-luminosity quasar counterparts. Silicate dust reprocessing dominates the mid-infrared spectra, and we generally measure the 10 and 18 micron spectral features weakly in emission in these galaxies. The strengths of the two silicate features together are sensitive to the dust distribution. We present numerical radiative transfer calculations that distinguish between clumpy and smooth geometries, which are applicable to any central heating source, including stars as well as AGNs. In the observations, we detect the obscuring ``torus of unified AGN schemes, modeling it as compact and clumpy. We also determine that star formation increases with AGN luminosity, although the proportion of the galaxies bolometric luminosity attributable to stars decreases with AGN luminosity.
Active galactic nuclei (AGN) are complex phenomena. At the heart of an AGN is a relativistic accretion disk around a spinning supermassive black hole (SMBH) with an X-ray emitting corona and, sometimes, a relativistic jet. On larger scales, the outer accretion disk and molecular torus act as the reservoirs of gas for the continuing AGN activity. And on all scales from the black hole outwards, powerful winds are seen that probably affect the evolution of the host galaxy as well as regulate the feeding of the AGN itself. In this review article, we discuss how X-ray spectroscopy can be used to study each of these components. We highlight how recent measurements of the high-energy cutoff in the X-ray continuum by NuSTAR are pushing us to conclude that X-ray coronae are radiatively-compact and have electron temperatures regulated by electron-positron pair production. We show that the predominance of rapidly-rotating objects in current surveys of SMBH spin is entirely unsurprising once one accounts for the observational selection bias resulting from the spin-dependence of the radiative efficiency. We review recent progress in our understanding of fast (v~0.1-0.3c), highly-ionized (mainly visible in FeXXV and FeXXVI lines), high-column density winds that may dominate quasar-mode galactic feedback. Finally, we end with a brief look forward to the promise of Astro-H and future X-ray spectropolarimeters.
A statistical study of intermediate Palomar Transient Factory supernovae (SNe) in Type 1 AGN has shown a major deficit of supernovae around Type 1 AGN host galaxies, with respect to Type 2 AGN hosts. The aim of this work is to test whether there is any preference for Type 1 AGN to host SN of a specific kind. Through the analysis of SN occurrence and their type (thermonuclear vs core-collapse), we can directly link the type of stars producing the SN events, thus this is an indirect way to study host galaxies in Type 1 AGN. We examine the detection fractions of SNe, the host galaxies and compare the sample properties to typical host galaxies in the Open Supernova Catalog (OSC; Guillochon et al. 2017). The majority of the host galaxies in the AGN sample are late-type, similar to typical galaxies hosting SN within the OSC. The findings are supportive of a deficiency of SNe near Type 1 AGN, although we cannot with certainty assess the overall detection fractions of SNe in Type 1 AGN relative to other SN host galaxies. We can state that Type 1 AGN has equal detection fractions of thermonuclear vs core-collapse SNe. However, we note the possibility of a higher detection rate of core-collapse supernovae in Type-1 AGN with insecure AGN classifications.
The unified model of active galactic nuclei (AGNs) proposes that different AGN optical spectral types are caused by different viewing angles with respect to an obscuring torus. Therefore, this model predicts that type 1 and type 2 AGNs should have similar host-galaxy properties. We investigate this prediction with 2463 X-ray selected AGNs in the COSMOS field. We divide our sample into type 1 and type 2 AGNs based on their spectra, morphologies, and variability. We derive their host-galaxy stellar masses ($M_star$) through SED fitting, and find that the host $M_star$ of type 1 AGNs tend to be slightly smaller than those of type 2 AGNs by $Deltaoverline{mathrm{log}M_star}approx0.2~mathrm{dex}$ ($approx 4sigma$ significance). Besides deriving star-formation rates (SFRs) from SED fitting, we also utilize far-infrared (FIR) photometry and a stacking method to obtain FIR-based SFRs. We find that the SFRs of type 1 and type 2 sources are similar once their redshifts and X-ray luminosities are controlled. We also investigate cosmic environment, and find that the surface number densities (sub-Mpc) and cosmic-web environments ($approx 1text{--}10$~Mpc) are similar for both populations. In summary, our analyses show that the host galaxies of type 1 and type 2 AGNs have similar SFR and cosmic environment in general, but the former tend to have lower $M_star$ than the latter. The difference in $M_star$ indicates that the AGN unification model is not strictly correct and both host galaxy and torus may contribute to the optical obscuration of AGNs.