Do you want to publish a course? Click here

HALOGAS Observations of NGC 4559: Anomalous and Extra-planar HI and its Relation to Star Formation

332   0   0.0 ( 0 )
 Added by Carlos Vargas
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use new deep 21 cm HI observations of the moderately inclined galaxy NGC 4559 in the HALOGAS survey to investigate the properties of extra-planar gas. We use TiRiFiC to construct simulated data cubes to match the HI observations. We find that a thick disk component of scale height $sim,2,mathrm{kpc}$, characterized by a negative vertical gradient in its rotation velocity (lag) of $sim13 pm 5$ km s$^{-1}$ kpc$^{-1}$ is an adequate fit to extra-planar gas features. The tilted ring models also present evidence for a decrease in the magnitude of the lag outside of $R_{25}$, and a radial inflow of $sim 10$ km s$^{-1}$. We extracted lagging extra-planar gas through Gaussian velocity profile fitting. From both the 3D models and and extraction analyses we conclude that $sim10-20%$ of the total {HI} mass is extra-planar. Most of the extra-planar gas is spatially coincident with regions of star formation in spiral arms, as traced by H$alpha$ and GALEX FUV images, so it is likely due to star formation processes driving a galactic fountain. We also find the signature of a filament of a kinematically forbidden HI, containing $sim 1.4times 10^{6}$ M$_{odot}$ of HI, and discuss its potential relationship to a nearby HI hole. We discover a previously undetected dwarf galaxy in HI located $sim 0.4^{circ}$ ($sim 58$ kpc) from the center of NGC 4559, containing $sim 4times10^{5}$ M$_{odot}$. This dwarf has counterpart sources in SDSS with spectra typical of HII regions, and we conclude it is two merging blue compact dwarf galaxies.



rate research

Read More

We present 21-cm observations and models of the HI kinematics and distribution of NGC 4244, a nearby edge-on Scd galaxy observed as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey. Our models give insight into the HI kinematics and distribution with an emphasis on the potential existence of extra-planar gas as well as a negative gradient in rotational velocity with height above the plane of the disk (a lag). Our models yield strong evidence against a significantly extended halo and instead favor a warp component along the line of sight as an explanation for some of the observed thickening of the disk. Based on these models, we detect a lag of -9 +3/-2 km s-1 kpc-1 in the approaching half and -9 +/-2 km s-1 kpc-1 in the receding half. This lag decreases in magnitude to -5+/-2 km s-1 kpc-1 and -4+/-2 km s-1 kpc-1 near a radius of 10 kpc in the approaching and receding halves respectively. Additionally, we detect several distinct morphological and kinematic features including a shell that is probably driven by star formation within the disk.
We present 21-cm observations and models of the neutral hydrogen in NGC 4565, a nearby, edge-on spiral galaxy, as part of the Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey. These models provide insight concerning both the morphology and kinematics of HI above, as well as within, the disk. NGC 4565 exhibits a distinctly warped and asymmetric disk with a flaring layer. Our modeling provides no evidence for a massive, extended HI halo. We see evidence for a bar and associated radial motions. Additionally, there are indications of radial motions within the disk, possibly associated with a ring of higher density. We see a substantial decrease in rotational velocity with height above the plane of the disk (a lag) of -40 +5/-20 km/s/kpc and -30 +5/-30 km s/kpc in the approaching and receding halves, respectively. This lag is only seen within the inner ~4.75 (14.9 kpc) on the approaching half and ~4.25 (13.4 kpc) on the receding, making this a radially shallowing lag, which is now seen in the HI layers of several galaxies. When comparing results for NGC 4565 and those for other galaxies, there are tentative indications of high star formation rate per unit area being associated with the presence of a halo. Finally, HI is found in two companion galaxies, one of which is clearly interacting with NGC 4565.
NGC 4013 is a distinctly warped galaxy with evidence of disk-halo activity. Through deep HI observations and modeling we confirm that the HI disk is thin (central exponential scale height of with an upper limit of 4 or 280 pc), but flaring. We detect a vertical gradient in rotation velocity (lag), which shallows radially from a value of -35 +7/-28 km/s/kpc at 1.4 (5.8 kpc), to a value of zero near R_25 (11.2 kpc). Over much of this radial range, the lag is relatively steep. Both the steepness and the radial shallowing are consistent with recent determinations for a number of edge-ons, which have been difficult to explain. We briefly consider the lag measured in NGC 4013 in the context of this larger sample and theoretical models, further illuminating disk-halo flows.
We present deep HI imaging of the nearby spiral galaxy NGC 4414, taken as part of the Westerbork HALOGAS (Hydrogen Accretion in LOcal GAlaxieS) survey. The observations show that NGC 4414 can be characterized by a regularly rotating inner HI disk, and a more disturbed outer disk. Modeling of the kinematics shows that the outer disk is best described by a U-shaped warp. Deep optical imaging also reveals the presence of a low surface brightness stellar shell, indicating a minor interaction with a dwarf galaxy at some stage in the past. Modeling of the inner disk suggests that about 4 percent of the inner HI is in the form of extra-planar gas. Because of the the disturbed nature of the outer disk, this number is difficult to constrain for the galaxy as a whole. These new, deep observations of NGC 4414 presented here show that even apparently undisturbed galaxies are interacting with their environment.
286 - Rense Boomsma 2004
Multi-wavelength observations of nearby spiral galaxies have shown that neutral and ionized gas are present up to a few kpc from the disk and that star formation and supernovae probably play an important role in bringing gas into the halo. We have obtained very sensitive HI observations of the face-on galaxy NGC 6946 and of the nearly edge-on starburst galaxy NGC 253. We find high velocity HI clouds in NGC 6946 and extra-planar gas with anomalous velocities in NGC 253. In both galaxies there seems to be a close connection between the star-forming disk and the halo HI. In the outer parts of NGC 6946 there is also evidence for recent gas accretion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا