Do you want to publish a course? Click here

On the Gauge Invariance of the Decay Rate of False Vacuum

90   0   0.0 ( 0 )
 Added by Takeo Moroi
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We study the gauge invariance of the decay rate of the false vacuum for the model in which the scalar field responsible for the false vacuum decay has gauge quantum number. In order to calculate the decay rate, one should integrate out the field fluctuations around the classical path connecting the false and true vacua (i.e., so-called bounce). Concentrating on the case where the gauge symmetry is broken in the false vacuum, we show a systematic way to perform such an integration and present a manifestly gauge-invariant formula of the decay rate of the false vacuum.



rate research

Read More

The decay rate of a false vacuum is studied in gauge theory, paying particular attention to its gauge invariance. Although the decay rate should not depend on the gauge parameter $xi$ according to the Nielsen identity, the gauge invariance of the result of a perturbative calculation has not been clearly shown. We give a prescription to perform a one-loop calculation of the decay rate, with which a manifestly gauge-invariant expression of the decay rate is obtained. We also discuss the renormalization necessary to make the result finite, and show that the decay rate is independent of the gauge parameter even after the renormalization.
We consider the Skyrme model modified by the addition of mass terms which explicitly break chiral symmetry and pick out a specific point on the models target space as the unique true vacuum. However, they also allow the possibility of false vacua, local minima of the potential energy. These false vacuum configurations admit metastable skyrmions, which we call false skyrmions. False skyrmions can decay due to quantum tunnelling, consequently causing the decay of the false vacuum. We compute the rate of decay of the false vacuum due to the existence of false skyrmions.
Motivated by cosmological examples we study quantum field theoretical tunnelling from an initial state where the classical field, i.e. the vacuum expectation value of the field operator is spatially homogeneous but performing a time-dependent oscillation about a local minimum. In particular we estimate both analytically and numerically the exponential contribution to the tunnelling probability. We additionally show that after the tunnelling event, the classical field solution - the so-called bubble - mediating the phase transition can either grow or collapse. We present a simple analytical criterium to distinguish between the two behaviours.
We propose a simple non-perturbative formalism for false vacuum decay using functional methods. We introduce the quasi-stationary effective action, a bounce action that non-perturbatively incorporates radiative corrections and is robust to strong couplings. The quasi-stationary effective action obeys an exact flow equation in a modified functional renormalization group with a motivated regulator functional. We demonstrate the use of this formalism in a simple toy model and compare our result with that obtained in perturbation theory.
127 - Todd Fugleberg 1999
In an effective Lagrangian approach to QCD we nonperturbatively calculate an analytic approximation to the decay rate of a false vacuum per unit volume, $Gamma/V$. We do so for both zero and high temperature theories. This result is important for the study of the early universe at around the time of the QCD phase transition. It is also important in order to determine the possibility of observing this false vacuum decay at the Relativistic Heavy Ion Collider (RHIC). Previously described dramatic signatures of the decay of false vacuum bubbles would occur in our case as well.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا