Suspended optical microresonators are promising devices for on-chip photonic applications such as radio-frequency oscillators, optical frequency combs, and sensors. Scaling up these devices demand the capability to tune the optical resonances in an integrated manner. Here, we design and experimentally demonstrate integrated on-chip thermo-optic tuning of suspended microresonators by utilizing suspended wire bridges and microheaters. We demonstrate the ability to tune the resonance of a suspended microresonator in silicon nitride platform by 9.7 GHz using 5.3 mW of heater power. The loaded optical quality factor (QL ~ 92,000) stays constant throughout the detuning. We demonstrate the efficacy of our approach by completely turning on and off the optical coupling between two evanescently coupled suspended microresonators.