Do you want to publish a course? Click here

The kinematics of the white dwarf population from the SDSS DR12

161   0   0.0 ( 0 )
 Added by Borja Anguiano
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use the Sloan Digital Sky Survey Data Release 12, which is the largest available white dwarf catalog to date, to study the evolution of the kinematical properties of the population of white dwarfs in the Galactic disc. We derive masses, ages, photometric distances and radial velocities for all white dwarfs with hydrogen-rich atmospheres. For those stars for which proper motions from the USNO-B1 catalog are available the true three-dimensional components of the stellar space velocity are obtained. This subset of the original sample comprises 20,247 objects, making it the largest sample of white dwarfs with measured three-dimensional velocities. Furthermore, the volume probed by our sample is large, allowing us to obtain relevant kinematical information. In particular, our sample extends from a Galactocentric radial distance $R_{rm G}=7.8$~kpc to 9.3~kpc, and vertical distances from the Galactic plane ranging from $Z=-0.5$~kpc to 0.5~kpc. We examine the mean components of the stellar three-dimensional velocities, as well as their dispersions with respect to the Galactocentric and vertical distances. We confirm the existence of a mean Galactocentric radial velocity gradient, $partiallangle V_{rm R}rangle/partial R_{rm G}=-3pm5$~km~s$^{-1}$~kpc$^{-1}$. We also confirm North-South differences in $langle V_{rm z}rangle$. Specifically, we find that white dwarfs with $Z>0$ (in the North Galactic hemisphere) have $langle V_{rm z}rangle<0$, while the reverse is true for white dwarfs with $Z<0$. The age-velocity dispersion relation derived from the present sample indicates that the Galactic population of white dwarfs may have experienced an additional source of heating, which adds to the secular evolution of the Galactic disc.



rate research

Read More

The spectroscopic catalogue of white dwarf-main sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS) is the largest and most homogeneous sample of compact binary stars currently known. However, because of selection effects, the current sample is strongly biased against systems containing cool white dwarfs and/or early type companions, which are predicted to dominate the intrinsic population. In this study we present colour selection criteria that combines optical (ugriz DR8 SDSS) plus infrared (yjhk DR9 UKIRT Infrared Sky Survey (UKIDSS), JHK Two Micron All Sky Survey (2MASS) and/or w1w2 Wide-Field Infrared Survey Explorer (WISE)) magnitudes to select 3419 photometric candidates of harbouring cool white dwarfs and/or dominant (M dwarf) companions. We demonstrate that 84 per cent of our selected candidates are very likely genuine WDMS binaries, and that the white dwarf effective temperatures and secondary star spectral types of 71 per cent of our selected sources are expected to be below <~10000-15000K, and concentrated at ~M2-3, respectively. We also present an updated version of the spectroscopic SDSS WDMS binary catalogue, which incorporates 47 new systems from SDSS DR8. The bulk of the DR8 spectroscopy is made up of main-sequence stars and red giants that were targeted as part of the Sloan Extension for Galactic Understanding and Exploration (SEGUE) Survey, therefore the number of new spectroscopic WDMS binaries in DR8 is very small compared to previous SDSS data releases. Despite their low number, DR8 WDMS binaries are found to be dominated by systems containing cool white dwarfs and therefore represent an important addition to the spectroscopic sample. The updated SDSS DR8 spectroscopic catalogue of WDMS binaries consists of 2316 systems.
As they evolve, white dwarfs undergo major changes in surface composition, a phenomenon known as spectral evolution. In particular, some stars enter the cooling sequence with helium atmospheres (type DO) but eventually develop hydrogen atmospheres (type DA), most likely through the upward diffusion of residual hydrogen. Our empirical knowledge of this process remains scarce: the fractions of white dwarfs that are born helium-rich and that experience the DO-to-DA transformation are poorly constrained. We tackle this issue by performing a detailed model-atmosphere investigation of 1806 hot ($T_{rm eff} ge 30,000$ K) white dwarfs observed spectroscopically by the Sloan Digital Sky Survey. We first introduce our new generations of model atmospheres and theoretical cooling tracks, both appropriate for hot white dwarfs. We then present our spectroscopic analysis, from which we determine the atmospheric and stellar parameters of our sample objects. We find that $sim$24% of white dwarfs begin their degenerate life as DO stars, among which $sim$2/3 later become DA stars. We also infer that the DO-to-DA transition occurs at substantially different temperatures ($75,000 {rm K} > T_{rm eff} > 30,000$ K) for different objects, implying a broad range of hydrogen content within the DO population. Furthermore, we identify 127 hybrid white dwarfs, including 31 showing evidence of chemical stratification, and we discuss how these stars fit in our understanding of the spectral evolution. Finally, we uncover significant problems in the spectroscopic mass scale of very hot ($T_{rm eff} > 60,000$ K) white dwarfs.
We present a Monte Carlo population synthesis study of white dwarf-main sequence (WD+MS) binaries in the Galactic disk aimed at reproducing the ensemble properties of the entire population observed by the Sloan Digital Sky Survey (SDSS) Data Release 12. Our simulations take into account all known observational biases and use the most up-to-date stellar evolutionary models. This allows us to perform a sound comparison between the simulations and the observational data. We find that the properties of the simulated and observed parameter distributions agree best when assuming low values of the common envelope efficiency (0.2-0.3), a result that is in agreement with previous findings obtained by observational and population synthesis studies of close SDSS WD+MS binaries. We also show that all synthetic populations that result from adopting an initial mass ratio distribution with a positive slope are excluded by observations. Finally, we confirm that the properties of the simulated WD+MS binary populations are nearly independent of the age adopted for the thin disk, on the contribution of WD+MS binaries from the thick disk (0-17 per cent of the total population) and on the assumed fraction of the internal energy that is used to eject the envelope during the common envelope phase (0.1-0.5).
176 - S. R. Kulkarni 2010
SDSS 1257+5428 is a white dwarf in a close orbit with a companion that has been suggested to be a neutron star. If so, it hosts the closest known neutron star, and its existence implies a great abundance of similar systems and a rate of white-dwarf neutron-star mergers similar to that of the type Ia supernova rate. Here, we present high signal-to-noise spectra of SDSS 1257+5428, which confirm an independent finding that the system is in fact composed of two white dwarfs, one relatively cool and with low mass, and the other hotter and more massive. With this, the demographics and merger rate are no longer puzzling (various factors combine to lower the latter by more than two orders of magnitude). We show that the spectra are fit well with a combination of two hydrogen model atmospheres, as long as the lines of the higher-gravity component are broadened significantly relative to what is expected from just pressure broadening. Interpreting this additional broadening as due to rotation, the inferred spin period is short, about 1 minute. Similarly rapid rotation is only seen in accreting white dwarfs that are magnetic; empirically, it appears that in non-magnetized white dwarfs, accreted angular momentum is lost by nova explosions before it can be transferred to the white dwarf. This suggests that the massive white dwarf in SDSS 1257+5428 is magnetic as well, with B~10^5 G. Alternatively, the broadening seen in the spectral lines could be due to a stronger magnetic field, of ~10^6 G. The two models could be distinguished by further observations.
White dwarfs (WDs) are powerful tools to study the evolutionary history of stars and binaries in the Galaxy. But do we understand their multiplicity from a theoretical point of view? This can be tested by a comparison with the sample of WDs within 20 pc, which is minimally affected by selection biases. From the literature, we compile the available information of the local WD sample with a particular emphasis on their multiplicity, and compare this to synthetic models of WD formation in single stars and binaries. As part of our population synthesis approach, we also study the effect of different assumptions concerning the star formation history, binary evolution, and the initial distributions of binary parameters. We find that the observed space densities of single and binary WDs are well reproduced by the models. The space densities of the most common WD systems (single WDs and unresolved WD-MS binaries) are consistent within a factor two with the observed value. We find a discrepancy only for the space density of resolved double WDs. We exclude that observational selection effects, fast stellar winds, or dynamical interactions with other objects in the Milky Way explain this discrepancy. We find that either the initial mass ratio distribution in the Solar neighbourhood is biased towards low mass-ratios, or more than ten resolved DWDs have been missed observationally in the 20 pc sample. Furthermore, we show that the low binary fraction of WD systems (~25%) compared to Solartype MS-MS binaries (~50%) is consistent with theory, and is mainly caused by mergers in binary systems, and to a lesser degree by WDs hiding in the glare of their companion stars. Lastly, Gaia will dramatically increase the size of the volume-limited WD sample, detecting the coolest and oldest WDs out to 50 pc. We provide a detailed estimate of the number of single and binary WDs in the Gaia sample.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا