Do you want to publish a course? Click here

Distribution of water in the G327.3-0.6 massive star-forming region

101   0   0.0 ( 0 )
 Added by Silvia Leurini
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We aim at characterizing the large-scale distribution of H2O in G327.3-0.6, a massive star-forming region made of individual objects in different evolutionary phases. We investigate variations of H2O abundance as function of evolution. We present Herschel continuum maps at 89 and 179 $mu$m of the whole region and an APEX map at 350 {mu}m of the IRDC. New spectral HIFI maps toward the IRDC region covering low-energy H2O lines at 987 and 1113 GHz are also presented and combined with HIFI pointed observations of the G327 hot core. We infer the physical properties of the gas through optical depth analysis and radiative transfer modeling. The continuum emission at 89 and 179 {mu}m follows the thermal continuum emission at longer wavelengths, with a peak at the position of the hot core, a secondary peak in the Hii region, and an arch-like layer of hot gas west of the Hii region. The same morphology is observed in the 1113 GHz line, in absorption toward all dust condensations. Optical depths of ~80 and 15 are estimated and correspond to column densities of 10^15 and 2 10^14 cm-2, for the hot core and IRDC position. These values indicate an H2O to H2 ratio of 3 10^-8 toward the hot core; the abundance of H2O does not change along the IRDC with values of some 10^-8. Infall (over ~ 20) is detected toward the hot core position with a rate of 1-1.3 10^-2 M_sun /yr, high enough to overcome the radiation pressure due to the stellar luminosity. The source structure of the hot core region is complex, with a cold outer gas envelope in expansion, situated between the outflow and the observer, extending over 0.32 pc. The outflow is seen face-on and centered away from the hot core. The distribution of H2O along the IRDC is roughly constant with an abundance peak in the more evolved object. These water abundances are in agreement with previous studies in other massive objects and chemical models.



rate research

Read More

We present observations of twelve rotational transitions of H2O-16, H2O-18, and H2O-17 toward the massive star-forming region NGC 6334 I, carried out with Herschel/HIFI as part of the guaranteed time key program Chemical HErschel Surveys of Star forming regions (CHESS). We analyze these observations to obtain insights into physical processes in this region. We identify three main gas components (hot core, cold foreground, and outflow) in NGC 6334 I and derive the physical conditions in these components. The hot core, identified by the emission in highly excited lines, shows a high excitation temperature of 200 K, whereas water in the foreground component is predominantly in the ortho- and para- ground states. The abundance of water varies between 4 10^-5 (outflow) and 10^-8 (cold foreground gas). This variation is most likely due to the freeze-out of water molecules onto dust grains. The H2O-18/H2O-17 abundance ratio is 3.2, which is consistent with the O-18/O-17 ratio determined from CO isotopologues. The ortho/para ratio in water appears to be relatively low 1.6(1) in the cold, quiescent gas, but close to the equilibrium value of three in the warmer outflow material (2.5(0.8)).
130 - Alwyn Wootten 2009
Using arguments parallel to those used in support of using H2CO as a sensitive probe of temperature and density in molecular clouds, we measured the J=7-6 and J=10-9 transitions of thioformaldehyde (H2CS) in several hot core sources. The goal here was to investigate more closely the conditions giving rise to H2CS emission in cloud cores containing young stars by modelling several transitions. The H2CS molecule is a slightly asymmetric rotor, a heavier analogue to H2CO. As in H2CO, transitions occur closely spaced in frequency, though they are substantially separated in energy. Transitions of H2CS originating from the K=0, 1, 2, 3, and 4 ladders in the 230 and 345 GHz windows can productively be used to constrain densities and temperatures. As a first step in developing the use of these transitions as thermometers and densitometers, we surveyed and modeled the emission from well known warm dense cores.
VLBI multi-epoch water maser observations are a powerful tool to study the dense, warm shocked gas very close to massive protostars. The very high-angular resolution of these observations allow us to measure the proper motions of the masers in a few weeks, and together with the radial velocity, to determine their full kinematics. In this paper we present a summary of the main observational results obtained toward the massive star-forming regions of Cepheus A and W75N, among them: (i) the identification of different centers of high-mass star formation activity at scales of 100 AU; (ii) the discovery of new phenomena associated with the early stages of high-mass protostellar evolution (e.g., isotropic gas ejections); and (iii) the identification of the simultaneous presence of a wide-angle outflow and a highly collimated jet in the massive object Cep A HW2, similar to what is observed in some low-mass protostars. Some of the implications of these results in the study of high-mass star formation are discussed.
A number of ultracompact H II regions in Galactic star forming environments have been observed to vary significantly in radio flux density on timescales of 10-20 years. Theory predicted that such variations should occur when the accretion flow that feeds a young massive star becomes unstable and clumpy. We have targeted the massive star-forming region W49A with the Karl G. Jansky Very Large Array (VLA) for observations at 3.6 cm with the B-configuration at 0.8 resolution, to compare to nearly identical observations taken almost 21 years earlier (February 2015 and August 1994). Most of the sources in the crowded field of ultracompact and hypercompact H II regions exhibit no significant changes over this time period. However, one source, W49A/G2, decreased by 20% in peak intensity (from 71+/-4 mJy/beam to 57+/-3 mJy/beam), and 40% in integrated flux (from 0.109+/-0.011 Jy to 0.067+/-0.007 Jy), where we cite 5 sigma errors in peak intensity, and 10% errors in integrated flux. We present the radio images of the W49A region at the two epochs, the difference image that indicates the location of the flux density decrease, and discuss explanations for the flux density decrease near the position of W49A/G2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا