Do you want to publish a course? Click here

In Vivo Evaluation of the Secure Opportunistic Schemes Middleware using a Delay Tolerant Social Network

54   0   0.0 ( 0 )
 Added by Corey Baker
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Over the past decade, online social networks (OSNs) such as Twitter and Facebook have thrived and experienced rapid growth to over 1 billion users. A major evolution would be to leverage the characteristics of OSNs to evaluate the effectiveness of the many routing schemes developed by the research community in real-world scenarios. In this paper, we showcase the Secure Opportunistic Schemes (SOS) middleware which allows different routing schemes to be easily implemented relieving the burden of security and connection establishment. The feasibility of creating a delay tolerant social network is demonstrated by using SOS to power AlleyOop Social, a secure delay tolerant networking research platform that serves as a real-life mobile social networking application for iOS devices. SOS and AlleyOop Social allow users to interact, publish messages, and discover others that share common interests in an intermittent network using Bluetooth, peer-to-peer WiFi, and infrastructure WiFi.



rate research

Read More

Over the past decade, online social networks (OSNs) such as Twitter and Facebook have thrived and experienced rapid growth to over 1 billion users. A major evolution would be to leverage the characteristics of OSNs to evaluate the effectiveness of the many routing schemes developed by the research community in real-world scenarios. In this demo, we showcase AlleyOop Social, a secure delay tolerant networking research platform that serves as a real-life mobile social networking application for iOS devices. AlleyOop Social allows users to interact, publish messages, and discover others that share common interests in an intermittent network using Bluetooth, peer-to-peer WiFi, and infrastructure WiFi. The research platform serves as an overlay application for the Secure Opportunistic Schemes (SOS) middleware which allows different routing schemes to be easily implemented relieving the burden of security and connection establishment.
Delay tolerant Ad-hoc Networks make use of mobility of relay nodes to compensate for lack of permanent connectivity and thus enable communication between nodes that are out of range of each other. To decrease delivery delay, the information that needs to be delivered is replicated in the network. Our objective in this paper is to study replication mechanisms that include coding in order to improve the probability of successful delivery within a given time limit. We propose an analytical approach that allows to quantify tradeoffs between resources and performance measures (energy and delay). We study the effect of coding on the performance of the network while optimizing parameters that govern routing. Our results, based on fluid approximations, are compared to simulations which validate the model
Measuring and evaluating network resilience has become an important aspect since the network is vulnerable to both uncertain disturbances and malicious attacks. Networked systems are often composed of many dynamic components and change over time, which makes it difficult for existing methods to access the changeable situation of network resilience. This paper establishes a novel quantitative framework for evaluating network resilience using the Dynamic Bayesian Network. The proposed framework can be used to evaluate the networks multi-stage resilience processes when suffering various attacks and recoveries. First, we define the dynamic capacities of network components and establish the networks five core resilience capabilities to describe the resilient networking stages including preparation, resistance, adaptation, recovery, and evolution; the five core resilience capabilities consist of rapid response capability, sustained resistance capability, continuous running capability, rapid convergence capability, and dynamic evolution capability. Then, we employ a two-time slices approach based on the Dynamic Bayesian Network to quantify five crucial performances of network resilience based on core capabilities proposed above. The proposed approach can ensure the time continuity of resilience evaluation in time-varying networks. Finally, our proposed evaluation framework is applied to different attacks and recovery conditions in typical simulations and real-world network topology. Results and comparisons with extant studies indicate that the proposed method can achieve a more accurate and comprehensive evaluation and can be applied to network scenarios under various attack and recovery intensities.
Routing plays a fundamental role in network applications, but it is especially challenging in Delay Tolerant Networks (DTNs). These are a kind of mobile ad hoc networks made of e.g. (possibly, unmanned) vehicles and humans where, despite a lack of continuous connectivity, data must be transmitted while the network conditions change due to the nodes mobility. In these contexts, routing is NP-hard and is usually solved by heuristic store and forward replication-based approaches, where multiple copies of the same message are moved and stored across nodes in the hope that at least one will reach its destination. Still, the existing routing protocols produce relatively low delivery probabilities. Here, we genetically improve two routing protocols widely adopted in DTNs, namely Epidemic and PRoPHET, in the attempt to optimize their delivery probability. First, we dissect them into their fundamental components, i.e., functionalities such as checking if a node can transfer data, or sending messages to all connections. Then, we apply Genetic Improvement (GI) to manipulate these components as terminal nodes of evolving trees. We apply this methodology, in silico, to six test cases of urban networks made of hundreds of nodes, and find that GI produces consistent gains in delivery probability in four cases. We then verify if this improvement entails a worsening of other relevant network metrics, such as latency and buffer time. Finally, we compare the logics of the best evolved protocols with those of the baseline protocols, and we discuss the generalizability of the results across test cases.
120 - S. Rathi , K. Thanuskodi 2009
Mobile IPv6 will be an integral part of the next generation Internet protocol. The importance of mobility in the Internet gets keep on increasing. Current specification of Mobile IPv6 does not provide proper support for reliability in the mobile network and there are other problems associated with it. In this paper, we propose Virtual Private Network (VPN) based Home Agent Reliability Protocol (VHAHA) as a complete system architecture and extension to Mobile IPv6 that supports reliability and offers solutions to the security problems that are found in Mobile IP registration part. The key features of this protocol over other protocols are: better survivability, transparent failure detection and recovery, reduced complexity of the system and workload, secure data transfer and improved overall performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا