Do you want to publish a course? Click here

Spin-split bands cause the indirect band gap of (CH$_3$NH$_3$)PbI$_3$: Experimental evidence from circular photogalvanic effect

209   0   0.0 ( 0 )
 Added by Daniel Niesner
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Long carrier lifetimes and diffusion lengths form the basis for the successful application of the organic-inorganic perovskite (CH$_3$NH$_3$)PbI$_3$ in solar cells and lasers. The mechanism behind the long carrier lifetimes is still not completely understood. Spin-split bands and a resulting indirect band gap have been proposed by theory. Using near band-gap left-handed and right-handed circularly polarized light we induce photocurrents of opposite directions in a single-crystal (CH$_3$NH$_3$)PbI$_3$ device at low temperature ($4~mathrm{K}$). The phenomenom is known as the circular photogalvanic effect and gives direct evidence for phototransport in spin-split bands. Simultaneous photoluminecence measurements show that the onset of the photocurrent is below the optical band gap. The results prove that an indirect band gap exists in (CH$_3$NH$_3$)PbI$_3$ with broken inversion symmetry as a result of spin-splittings in the band structure. This information is essential for understanding the photophysical properties of organic-inorganic perovskites and finding lead-free alternatives. Furthermore, the optically driven spin currents in (CH$_3$NH$_3$)PbI$_3$ make it a candidate material for spintronics applications.



rate research

Read More

119 - Junwen Li , Paul M. Haney 2016
We study the circular photogalvanic effect in the organometal halide perovskite solar cell absorber CH$_3$NH$_3$PbI$_3$. For crystal structures which lack inversion symmetry, the calculated photocurrent density is about $10^{-9}$ A/W, comparable to the previously studied quantum well and bulk Rashba systems. Because of the dependence of the circular photogalvanic effect on inversion symmetry breaking, the degree of inversion asymmetry at different depths from the surface can be probed by tuning the photon energy and associated penetration depth. We propose that measurements of this effect may clarify the presence or absence of inversion symmetry, which remains a controversial issue and has been argued to play an important role in the high conversion efficiency of this material.
Hybrid halide perovskites exhibit nearly 20% power conversion efficiency, but the origin of their high efficiency is still unknown. Here, we compute the shift current, a dominant mechanism of bulk photovoltaic (PV) effect for ferroelectric photovoltaics, in CH$_3$NH$_3$PbI$_3$ and CH$_3$NH$_3$PbI$_{3-x}$Cl$_{x}$ from first principles. We find that these materials give approximately three times larger shift current PV response to near-IR and visible light than the prototypical ferroelectric photovoltaic BiFeO$_3$. The molecular orientations of CH$_3$NH$_3^{+}$ can strongly affect the corresponding PbI$_3$ inorganic frame so as to alter the magnitude of the shift current response. Specifically, configurations with dipole moments aligned in parallel distort the inorganic PbI$_3$ frame more significantly than configurations with near net zero dipole, yielding a larger shift current response. Furthermore, we explore the effect of Cl substitution on shift current, and find that Cl substitution at the equatorial site induces a larger response than does substitution at the apical site.
76 - Chao Zheng , Oleg Rubel 2019
Instability of perovskite photovoltaics is still a topic which is currently under intense debate, especially the role of water environment. Unraveling the mechanism of this instability is urgent to enable practical application of perovskite solar cells. Here, ab initio metadynamics is employed to investigate the initial phase of a dissolution process of CH$_3$NH$_3$PbI$_3$ (MAPbI$_3$) in explicit water. It is found that the initial dissolution of MAPbI$_3$ is a complex multi-step process triggered by the departure of I$^-$ ion from the CH$_3$NH$_3$I-terminated surface. Reconstruction of the free energy landscape indicates a low energy barrier for water dissolution of MAPbI$_3$. In addition, we propose a two-step thermodynamic cycle for MAPbI$_3$ dissolution in water at a finite concentration that renders a spontaneity of the dissolution process. The low energy barrier for the initial dissolution step and the spontaneous nature of MAPbI$_3$ dissolution in water explain why the water immediately destroys pristine MAPbI$_3$. The dissolution thermodynamics of all-inorganic CsPbI$_3$ perovskite is also analyzed for comparison. Hydration enthalpies and entropies of aqueous ions play an important role for the dissolution process. Our findings provide a comprehensive understanding to the current debate on water instability of MAPbI$_3$.
The instability of organometal halide perovskites when in contact with water is a serious challenge to their feasibility as solar cell materials. Although studies of moisture exposure have been conducted, an atomistic understanding of the degradation mechanism is required. Toward this goal, we study the interaction of water with the (001) surfaces of CH$_3$NH$_3$PbI$_3$ under both low and high water concentrations using density functional theory. We find that water adsorption is heavily influenced by the orientation of the methylammonium cations close to the surface. It is demonstrated that, depending on methylammonium orientation, the water molecule can infiltrate into the hollow site of the surface and get trapped. Controlling dipole orientation via poling or interfacial engineering could thus enhance its moisture stability. We do not see a direct reaction between the water and methylammonium molecules. Furthermore, calculations with an implicit solvation model indicate that a higher water concentration may facilitate degradation.
We perform a thorough structural search with the minima hopping method (MHM) to explore low-energy structures of methylammonium lead iodide. By combining the MHM with a forcefield, we efficiently screen vast portions of the configurational space with large simulation cells containing up to 96 atoms. Our search reveals two structures of methylammonium iodide perovskite (MAPI) that are substantially lower in energy than the well-studied experimentally observed low-temperature $Pnma$ orthorhombic phase according to density functional calculations. Both structures have not yet been reported in the literature for MAPI, but our results show that they could emerge as thermodynamically stable phases via compression at low temperatures. In terms of the electronic properties, the two phases exhibit larger band gaps than the standard perovskite-type structures. Hence, pressure induced phase selection at technologically achievable pressures (i.e., via thin-film strain) is a route towards the synthesis of several MAPI polymorph with variable band gaps.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا