No Arabic abstract
In quantum mechanics it is often required to describe in a semiclassical approximation the motion of particles moving within a given energy band. Such a representation leads to the appearance of an analogues of fictitious forces in the semiclassical equations of motion associated with the Berry curvature. The purpose of this paper is to derive systematically the kinetic Boltzmann equations displaying these effects in the case that the band is degenerate, and as such the Berry curvature is non-Abelian. We use the formalism of phase-space quantum mechanics to derive the results.
Recently Mazenko and Das and Mazenko introduced a non-equilibrium field theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy (BBGKY hierarchy) with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.
We report the study of a new experimental granular Brownian motor, inspired to the one published in [Phys. Rev. Lett. 104, 248001 (2010)], but different in some ingredients. As in that previous work, the motor is constituted by a rotating pawl whose surfaces break the rotation-inversion symmetry through alternated patches of different inelasticity, immersed in a gas of granular particles. The main novelty of our experimental setup is in the orientation of the main axis, which is parallel to the (vertical) direction of shaking of the granular fluid, guaranteeing an isotropic distribution for the velocities of colliding grains, characterized by a variance $v_0^2$. We also keep the granular system diluted, in order to compare with Boltzmann-equation-based kinetic theory. In agreement with theory, we observe for the first time the crucial role of Coulomb friction which induces two main regimes: (i) rare collisions (RC), with an average drift $ < omega > sim v_0^3$, and (ii) frequent collisions (FC), with $ < omega > sim v_0$. We also study the fluctuations of the angle spanned in a large time interval, $Delta theta$, which in the FC regime is proportional to the work done upon the motor. We observe that the Fluctuation Relation is satisfied with a slope which weakly depends on the relative collision frequency.
We show that the kinetic theory of quantum and classical Calogero particles reduces to the free-particle Boltzmann equation. We reconcile this simple emergent behaviour with the strongly interacting character of the model by developing a Bethe-Lax correspondence in the classical case. This demonstrates explicitly that the freely propagating degrees of freedom are not bare particles, but rather quasiparticles corresponding to eigenvectors of the Lax matrix. We apply the resulting kinetic theory to classical Calogero particles in external trapping potentials and find excellent agreement with numerical simulations in all cases, both for harmonic traps that preserve integrability and exhibit perfect revivals, and for anharmonic traps that break microscopic integrability. Our framework also yields a simple description of multi-soliton solutions in a harmonic trap, with solitons corresponding to sharp peaks in the quasiparticle density. Extensions to quantum systems of Calogero particles are discussed.
The effect of quenched (frozen) orientational disorder on the collective motion of active particles is analyzed. We find that, as with annealed disorder (Langevin noise), active polar systems are far more robust against quenched disorder than their equilibrium counterparts. In particular, long ranged order (i.e., the existence of a non-zero average velocity $langle {bf v} rangle$) persists in the presence of quenched disorder even in spatial dimensions $d=3$, while it is destroyed even by arbitrarily weak disorder in $d le 4$ in equilibrium systems. Furthermore, in $d=2$, quasi-long-ranged order (i.e., spatial velocity correlations that decay as a power law with distance) occurs when quenched disorder is present, in contrast to the short-ranged order that is all that can survive in equilibrium. These predictions are borne out by simulations in both two and three dimensions.
We study quantum transport after an inhomogeneous quantum quench in a free fermion lattice system in the presence of a localised defect. Using a new rigorous analytical approach for the calculation of large time and distance asymptotics of physical observables, we derive the exact profiles of particle density and current. Our analysis shows that the predictions of a semiclassical approach that has been extensively applied in similar problems match exactly with the correct asymptotics, except for possible finite distance corrections close to the defect. We generalise our formulas to an arbitrary non-interacting particle-conserving defect, expressing them in terms of its scattering properties.