Do you want to publish a course? Click here

Existence and regularity of positive solutions of quasilinear elliptic problems with singular semilinear term

110   0   0.0 ( 0 )
 Added by J. V. A. Goncalves
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

This paper deals with existence and regularity of positive solutions of singular elliptic problems on a smooth bounded domain with Dirichlet boundary conditions involving the $Phi$-Laplacian operator. The proof of existence is based on a variant of the generalized Galerkin method that we developed inspired on ideas by Browder and a comparison principle. By using a kind of Moser iteration scheme we show $L^{infty}(Omega)$-regularity for positive solutions



rate research

Read More

Let $Omega subset mathbb{R}^N$ be a bounded domain and $delta(x)$ be the distance of a point $xin Omega$ to the boundary. We study the positive solutions of the problem $Delta u +frac{mu}{delta(x)^2}u=u^p$ in $Omega$, where $p>0, ,p e 1$ and $mu in mathbb{R},,mu e 0$ is smaller then the Hardy constant. The interplay between the singular potential and the nonlinearity leads to interesting structures of the solution sets. In this paper we first give the complete picture of the radial solutions in balls. In particular we establish for $p>1$ the existence of a unique large solution behaving like $delta^{- frac2{p-1}}$ at the boundary. In general domains we extend results of arXiv:arch-ive/1407.0288 and show that there exists a unique singular solutions $u$ such that $u/delta^{beta_-}to c$ on the boundary for an arbitrary positive function $c in C^{2+gamma}(partialOmega) , (gamma in (0,1)), c ge 0$. Here $beta_-$ is the smaller root of $beta(beta-1)+mu=0$.
We consider positive singular solutions to semilinear elliptic problems with possibly singular nonlinearity. We deduce symmetry and monotonicity properties of the solutions via the moving plane procedure.
We prove existence results of two solutions of the problem [ begin{cases} L(u)+u^{m-1}=lambda u^{p-1} & text{ in $Omega$}, quad u>0 &text{ in $Omega$}, quad u=0 & text{ on $partial Omega$}, end{cases} ] where $L(v)=-{rm div}(M(x) abla v)$ is a linear operator, $pin (2,2^{*}]$ and $lambda$ and $ m$ sufficiently large. Then their asymptotical limit as $mto +infty$ is investigated showing different behaviors.
We study the existence of positive solutions for a class of double phase Dirichlet equations which have the combined effects of a singular term and of a parametric superlinear term. The differential operator of the equation is the sum of a $p$-Laplacian and of a weighted $q$-Laplacian ($q<p$) with discontinuous weight. Using the Nehari method, we show that for all small values of the parameter $lambda>0$, the equation has at least two positive solutions.
In this paper, we consider the pointwise boundary Lipschitz regularity of solutions for the semilinear elliptic equations in divergence form mainly under some weaker assumptions on nonhomogeneous term and the boundary. If the domain satisfies C^{1,text{Dini}} condition at a boundary point, and the nonhomogeneous term satisfies Dini continuous condition and Lipschitz Newtonian potential condition, then the solution is Lipschitz continuous at this point. Furthermore, we generalize this result to Reifenberg C^{1,text{Dini}} domains.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا