Dirac and nodal line magnons in three-dimensional antiferromagnets


Abstract in English

We study the topological properties of magnon excitations in three-dimensional antiferromagnets, where the ground state configuration is invariant under time-reversal followed by space-inversion ($PT$-symmetry). We prove that Dirac points and nodal lines, the former being the limiting case of the latter, are the generic forms of symmetry-protected band crossings between magnon branches. As a concrete example, we study a Heisenberg spin model for a spin-web compound, Cu$_3$TeO$_6$, and show the presence of the magnon Dirac points assuming a collinear magnetic structure. Upon turning on symmetry-allowed Dzyaloshinsky-Moriya interactions, which introduce a small non-collinearity in the ground state configuration, we find that the Dirac points expand into nodal lines with nontrivial $Z_2$-topological charge, a new type of nodal lines unpredicted in any materials so far.

Download