Do you want to publish a course? Click here

Four-loop QCD propagators and vertices with one vanishing external momentum

162   0   0.0 ( 0 )
 Added by Takahiro Ueda
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We have computed the self-energies and a set of three-particle vertex functions for massless QCD at the four-loop level in the MSbar renormalization scheme. The vertex functions are evaluated at points where one of the momenta vanishes. Analytical results are obtained for a generic gauge group and with the full gauge dependence, which was made possible by extensive use of the Forcer program for massless four-loop propagator integrals. The bare results in dimensional regularization are provided in terms of master integrals and rational coefficients; the latter are exact in any space-time dimension. Our results can be used for further precision investigations of the perturbative behaviour of the theory in schemes other than MSbar. As an example, we derive the five-loop beta function in a relatively common alternative, the minimal momentum subtraction (MiniMOM) scheme.



rate research

Read More

We present complete analytical ${mathcal O}(epsilon^2)$ results on the one-loop amplitudes relevant for the NNLO quark-parton model description of the hadroproduction of heavy quarks as given by the so-called loop-by-loop contributions. All results of the perturbative calculation are given in the dimensional regularization scheme. These one-loop amplitudes can also be used as input in the determination of the corresponding NNLO cross sections for heavy flavor photoproduction, and in photon-photon reactions.
We compute renormalized vertices of the 125 GeV Higgs boson $h$ with the weak gauge bosons ($hVV$), fermions ($hfbar{f}$) and itself ($hhh$) in the Georgi-Machacek model at one-loop level. The renormalization is performed based on the on-shell scheme with the use of the minimal subtraction scheme only for the $hhh$ vertex. We explicitly show the gauge dependence in the counterterms of the scalar mixing parameters in the general $R_xi$ gauge, and that the dependence can be removed by using the pinch technique in physical scattering processes. We then discuss the possible allowed deviations in these one-loop corrected Higgs couplings from the standard model predictions by scanning model parameters under the constraints of perturbative unitarity and vacuum stability as well as those from experimental data.
92 - S. Moch , V. Magerya 2021
We review the current status of perturbative corrections in QCD at four loops for scattering processes with space- and time-like kinematics at colliders, with specific focus on deep-inelastic scattering and electron-positron annihilation. The calculations build on the parametric reduction of loop and phase space integrals up to four-loop order using computer algebra programs such as FORM, designed for large scale computations.
355 - A.V. Smirnov , M. Tentyukov 2010
We present numerical results which are needed to evaluate all non-trivial master integrals for four-loop massless propagators, confirming the recent analytic results of[1]and evaluating an extra order in $ep$ expansion for each master integral.
70 - Andre Sternbeck 2016
We review lattice calculations of the elementary Greens functions of QCD with a special emphasis on the Landau gauge. These lattice results have been of interest to continuum approaches to QCD over the past 20 years. They are used as reference for Dyson-Schwinger- and functional renormalization group equation calculations as well as for hadronic bound-state equations. The lattice provides low-energy data for propagators and three-point vertices in Landau gauge at zero and finite temperature even including dynamical fermions. We summarize Michael Muller-Preu{ss}kers important contributions to this field and put them into the perspective of his other research interests.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا