Do you want to publish a course? Click here

The Universality of Thermal Transport in Amorphous Nanowires at Low Temperatures

69   0   0.0 ( 0 )
 Added by Olivier Bourgeois
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Thermal transport properties of amorphous materials at low temperatures are governed by the interaction between phonons and localized excitations referred to as tunneling two level systems (TLS). The temperature variation of the thermal conductivity of these amorphous materials is considered as universal and is characterized by a quadratic power law. This is well described by the phenomenological TLS model even though its microscopic explanation is still elusive. Here, by scaling down to the nanometer scale amorphous systems much below the bulk phonon-TLS mean free path, we probed the robustness of that model in restricted geometry systems. Using very sensitive thermal conductance measurements, we demonstrate that the temperature dependence of the thermal conductance of silicon nitride nanostructures remains mostly quadratic independently of the nanowire section. It is not following the cubic power law in temperature as expected in a Casimir-Ziman regime of boundary limited thermal transport. This shows a thermal transport counter intuitively dominated by phonon-TLS interactions and not by phonon-boundary scattering in the nanowires. This could be ascribed to an unexpected high density of TLS on the surfaces which still dominates the phonon diffusion processes at low temperatures and explains why the universal quadratic temperature dependence of thermal conductance still holds for amorphous nanowires.



rate research

Read More

121 - Olivier Bourgeois 2006
We have performed thermal conductance measurements on individual single crystalline silicon suspended nanowires. The nanowires (130 nm thick and 200 nm wide) are fabricated by e-beam lithography and suspended between two separated pads on Silicon On Insulator (SOI) substrate. We measure the thermal conductance of the phonon wave guide by the 3 method. The cross-section of the nanowire approaches the dominant phonon wavelength in silicon which is of the order of 100 nm at 1K. Above 1.3K the conductance behaves as T3, but a deviation is measured at the lowest temperature which can be attributed to the reduced geometry.
138 - A.A. Zhukov , Ch. Volk , A. Winden 2014
In the current paper a set of experiments dedicated to investigations of local electronic transport in undoped InAs nanowires at helium temperatures in the presence of a charged atomic-force microscope tip is presented. Both nanowires without defects and with internal tunneling barriers were studied. The measurements were performed at various carrier concentrations in the systems and opacity of contact-to-wire interfaces. The regime of Coulomb blockade is investigated in detail including negative differential conductivity of the whole system. The situation with open contacts with one tunneling barrier and undivided wire is also addressed. Special attention is devoted to recently observed quasi-periodic standing waves.
The yield of amorphous solids like metallic glasses under external stress was discussed asserting that it is related to the glass transition by increasing temperature, or that it can be understood using statistical theories of various sorts. Here we study the approach to stress-controlled yield and argue that neither assertions can be supported, at least at low temperatures. The yield of amorphous solids at low temperatures is a highly structured phenomenon, characterized by a specific series of mechanical instabilities, and having no similarity at all to fluidization by increased temperature, real or fictive. The series of instabilities followed by stress controlled yield at low but finite temperature protocols can be predicted by analyzing athermal quasi-static strain controlled protocols, making the latter highly relevant for the deep understanding of the mechanical properties of amorphous solids.
We have measured the electronic heat capacity of thin film nanowires of copper and silver at temperatures 0.1 - 0.3 K; the films were deposited by standard electron-beam evaporation. The specific heat of the Ag films of sub-100 nm thickness agrees with the bulk value and the free-electron estimate, whereas that of similar Cu films exceeds the corresponding reference values by one order of magnitude. The origin of the anomalously high heat capacity of copper films remains unknown for the moment. Based on the low heat capacity and the possibility to devise a tunnel probe thermometer on it, the Ag films form a promising absorber material, e.g., for micro-wave photon calorimetry.
We probe the electron transport properties in the shell of GaAs/In0.2Ga0.8As core/shell nanowires at high electric fields using optical pump / THz probe spectroscopy with broadband THz pulses and peak electric fields up to 0.6 MV/cm. The plasmon resonance of the photoexcited charge carriers exhibits a systematic redshift and a suppression of its spectral weight for THz driving fields exceeding 0.4 MV/cm. This behavior is attributed to the intervalley electron scattering resulting in the increase of the average electron effective mass and the corresponding decrease of the electron mobility by about 2 times at the highest fields. We demonstrate that the increase of the effective mass is non-uniform along the nanowires and takes place mainly in their middle part, leading to a spatially inhomogeneous carrier response. Our results quantify the nonlinear transport regime in GaAs-based nanowires and show their high potential for development of nano-devices operating at THz frequencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا