Do you want to publish a course? Click here

The Effects of Ram-pressure Stripping and Supernova Winds on the Tidal Stirring of Disky Dwarfs: Enhanced Transformation into Dwarf Spheroidals

67   0   0.0 ( 0 )
 Added by Stelios Kazantzidis
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A conclusive model for the formation of dwarf spheroidal (dSph) galaxies still remains elusive. Owing to their proximity to the massive spirals Milky Way (MW) and M31, various environmental processes have been invoked to explain their origin. In this context, the tidal stirring model postulates that interactions with MW-sized hosts can transform rotationally supported dwarfs, resembling present-day dwarf irregular (dIrr) galaxies, into systems with the kinematic and structural properties of dSphs. Using N-body+SPH simulations, we investigate the dependence of this transformation mechanism on the gas fraction, fgas, in the disk of the progenitor dwarf. Our numerical experiments incorporate for the first time the combined effects of radiative cooling, ram-pressure stripping, star formation, supernova (SN) winds, and a cosmic UV background. For a given orbit inside the primary galaxy, rotationally supported dwarfs with gas fractions akin to those of observed dIrrs (fgas >= 0.5), demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs relative to their collisionless (fgas = 0) counterparts. We argue that the combination of ram-pressure stripping and SN winds causes the gas-rich dwarfs to respond more impulsively to tides, augmenting their transformation. When fgas >= 0.5, disky dwarfs on previously unfavorable low-eccentricity or large-pericenter orbits are still able to transform. On the widest orbits, the transformation is incomplete; the dwarfs retain significant rotational support, a relatively flat shape, and some gas, naturally resembling transition-type systems. We conclude that tidal stirring constitutes a prevalent evolutionary mechanism for shaping the structure of dwarf galaxies within the currently favored CDM cosmological paradigm.



rate research

Read More

(Abridged) The origin of dSphs in the Local Group (LG) remains an enigma. The tidal stirring model posits that late-type, rotationally-supported dwarfs resembling present-day dwarf irregular (dIrr) galaxies can transform into dSphs via interactions with Milky Way-sized hosts. Using collisionless N-body simulations, we investigate for the first time how tidal stirring depends on the dark matter (DM) density distribution in the central stellar region of the progenitor disky dwarf. Specifically, we explore various asymptotic inner slopes gamma of the dwarf DM density profiles (rho propto r^{-gamma} as r -> 0). For a given orbit inside the primary, rotationally-supported dwarfs embedded in DM halos with core-like density distributions (gamma = 0.2) and mild density cusps (gamma = 0.6) demonstrate a substantially enhanced likelihood and efficiency of transformation into dSphs compared to their counterparts with steeper DM density profiles (gamma = 1). Such shallow DM distributions are akin to those of observed dIrrs, highlighting tidal stirring as a plausible model for the LG morphology-density relation. When gamma <1, a single pericentric passage can induce dSph formation and disky dwarfs on low-eccentricity or large-pericenter orbits are able to transform into dSphs; these new results allow the tidal stirring model to explain the existence of virtually all known dSphs across a wide range of distances from their hosts. A subset of rotationally-supported dwarfs with gamma <1 are eventually disrupted by the primary; those that survive as dSphs are generally on orbits that are biased towards lower eccentricities and/or larger pericenters relative to those of typical CDM satellites. The latter could explain the rather peculiar orbits of several classic LG dSphs such as Fornax, Leo I, Tucana, and Cetus.
(Abridged) The tidal stirring model posits the formation of dSph galaxies via the tidal interactions between rotationally-supported dwarfs and MW-sized host galaxies. Using a set of collisionless N-body simulations, we investigate the efficiency of the tidal stirring mechanism. We explore a wide variety of dwarf orbital configurations and initial structures and demonstrate that in most cases the disky dwarfs experience significant mass loss and their stellar components undergo a dramatic morphological and dynamical transformation: from disks to bars and finally to pressure-supported spheroidal systems with kinematic and structural properties akin to those of the classic dSphs in the Local Group (LG). Our results suggest that such tidal transformations should be common occurrences within the currently favored cosmological paradigm and highlight the key factor responsible for an effective metamorphosis to be the strength of the tidal shocks at the pericenters of the orbit. We demonstrate that the combination of short orbital times and small pericenters, characteristic of dwarfs being accreted at high redshift, induces the strongest transformations. Our models also indicate that the transformation efficiency is affected significantly by the structure of the progenitor disky dwarfs. Lastly, we find that the dwarf remnants satisfy the relation Vmax = sqrt{3} * sigma, where sigma is the 1D, central stellar velocity dispersion and Vmax is the maximum halo circular velocity, with intriguing implications for the missing satellites problem. Overall, we conclude that the action of tidal forces from the hosts constitutes a crucial evolutionary mechanism for shaping the nature of dwarf galaxies in environments such as that of the LG. Environmental processes of this type should thus be included as ingredients in models of dwarf galaxy formation and evolution.
Ram-pressure stripping (RPS) is a well observed phenomenon of massive spiral galaxies passing through the hot intra-cluster medium (ICM) of galaxy clusters. For dwarf galaxies (DGs) within a cluster, the transformation from gaseous to gas-poor systems by RPS is not easily observed and must happen in the outskirts of clusters. In a few objects in close by galaxy clusters and the field, RPS has been observed. Since cluster early-type DGs also show a large variety of internal structures (unexpected central gas reservoirs, blue stellar cores, composite radial stellar profiles), we aim in this study to investigate how ram pressure (RP) affects the interstellar gas content and therefore the star-formation (SF) activity. Using a series of numerical simulations, we quantify the dependence of the stripped-off gas on the velocity of the infalling DGs and on the ambient ICM density. We demonstrated that SF can be either suppressed or triggered by RP depending on the ICM density and the DGs mass. Under some conditions, RP can compress the gas, so that it is unexpectedly retained in the central DG region and forms stars. When gas clouds are still bound against stripping but lifted from a thin disk and fall back, their new stars form an ellipsoidal (young) stellar population already with a larger velocity dispersion without the necessity of harassment. Most spectacularly, star clusters can form downstream in stripped-off massive gas clouds in the case of strong RP. We compare our results to observations.
The formation mechanism of tidal dwarf galaxies means they are expected to contain little or no dark matter. As such, they might be expected to be very sensitive to their environment. We investigate the impact of ram pressure on tidal dwarf galaxies in a parameter study, varying dwarf galaxy properties and ram pressures. We submit model tidal dwarf galaxies to wind-tunnel style tests using a toy ram pressure model. The effects of ram pressure are found to be substantial. If tidal dwarf galaxies have their gas stripped, they may be completely destroyed. Ram pressure drag causes acceleration of our dwarf galaxy models, and this further enhances stellar losses. The dragging can also cause stars to lie in a low surface brightness stellar stream that points in the opposite direction to the stripped gas, in a manner distinctive from tidal streams. We investigate the effects of ram pressure on surface density profiles, the dynamics of the stars, and discuss the consequences for dynamical mass measurements.
We present two new examples of galaxies undergoing transformation in the Shapley supercluster core. These low-mass (stellar mass from 0.4E10 to 1E10 Msun) galaxies are members of the two clusters SC-1329-313 (z=0.045) and SC-1327-312 (z=0.049). Integral-field spectroscopy complemented by imaging in ugriK bands and in Halpha narrow-band are used to disentangle the effects of tidal interaction (TI) and ram-pressure stripping (RPS). In both galaxies, SOS-61086 and SOS-90630, we observe one-sided extraplanar ionized gas extending respectively 30kpc and 41kpc in projection from their disks. The galaxies gaseous disks are truncated and the kinematics of the stellar and gas components are decoupled, supporting the RPS scenario. The emission of the ionized gas extends in the direction of a possible companion for both galaxies suggesting a TI. The overall gas velocity field of SOS-61086 is reproduced by ad hoc N-body/hydrodynamical simulations of RPS acting almost face-on and starting about 250Myr ago, consistent with the age of the young stellar populations. A link between the observed gas stripping and the cluster-cluster interaction experienced by SC-1329-313 and A3562 is suggested. Simulations of ram pressure acting almost edge-on are able to fully reproduce the gas velocity field of SOS-90630, but cannot at the same time reproduce the extended tail of outflowing gas. This suggests that an additional disturbance from a TI is required. This study adds a piece of evidence that RPS may take place in different environments with different impacts and witnesses the possible effect of cluster-cluster merger on RPS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا