Do you want to publish a course? Click here

The XXL Survey: XVII. X-ray and Sunyaev-Zeldovich Properties of the Redshift 2.0 Galaxy Cluster XLSSC 122

132   0   0.0 ( 0 )
 Added by Adam Mantz
 Publication date 2017
  fields Physics
and research's language is English
 Authors Adam B. Mantz




Ask ChatGPT about the research

We present results from a 100 ks XMM-Newton observation of galaxy cluster XLSSC 122, the first massive cluster discovered through its X-ray emission at $zapprox2$. The data provide the first precise constraints on the bulk thermodynamic properties of such a distant cluster, as well as an X-ray spectroscopic confirmation of its redshift. We measure an average temperature of $kT=5.0pm0.7$ keV; a metallicity with respect to solar of $Z/Z_{odot}=0.33^{+0.19}_{-0.17}$, consistent with lower-redshift clusters; and a redshift of $z=1.99^{+0.07}_{-0.06}$, consistent with the earlier photo-z estimate. The measured gas density profile leads to a mass estimate at $r_{500}$ of $M_{500}=(6.3pm1.5)times10^{13}M_{odot}$. From CARMA 30 GHz data, we measure the spherically integrated Compton parameter within $r_{500}$ to be $Y_{500}=(3.6pm0.4)times10^{-12}$. We compare the measured properties of XLSSC 122 to lower-redshift cluster samples, and find good agreement when assuming the simplest (self-similar) form for the evolution of cluster scaling relations. While a single cluster provides limited information, this result suggests that the evolution of the intracluster medium in the most massive, well developed clusters is remarkably simple, even out to the highest redshifts where they have been found. At the same time, our data reaffirm the previously reported spatial offset between the centers of the X-ray and SZ signals for XLSSC 122, suggesting a disturbed configuration. Higher spatial resolution data could thus provide greater insights into the internal dynamics of this system.



rate research

Read More

We use numerical simulations to predict the soft X-ray ([0.4-0.6] keV) and Sunyaev-Zeldovich signal (at 150 GHz) from the large scale structure in the Universe and then compute 2-point statistics to study the spatial distribution and time evolution of the signals. The average X-ray signal predicted for the WHIM is in good agreement with observational constraints that set it at about 10% of the total Diffuse X-ray Background. The characteristic angle computed with the Autocorrelation Function is of the order of some arcminutes and becomes smaller at higher redshift. The power spectrum peak of the SZ due to the WHIM is at l~10000 and has amplitude of ~0.2 muK^2, about one order of magnitude below the signal measured with telescopes like Planck, ACT, and SPT. Even if the high-redshift WHIM signal is too weak to be detected using X-rays only, the small-scale correlation between X-ray and SZ maps is dominated by the high-redshift WHIM. This makes the analysis of the SZ signal in support of X-rays a promising tool to study the early time WHIM.
We describe Sunyaev-Zeldovich (SZ) effect measurements and analysis of the intracluster medium (ICM) pressure profiles of a set of 45 massive galaxy clusters imaged using Bolocam at the Caltech Submillimeter Observatory. We have used masses determined from Chandra X-ray observations to scale each clusters profile by the overdensity radius R500 and the mass-and-redshift-dependent normalization factor P500. We deproject the average pressure profile of our sample into 13 logarithmically spaced radial bins between 0.07R500 and 3.5R500. We find that a generalized Navarro, Frenk, and White (gNFW) profile describes our data with sufficient goodness-of-fit and best-fit parameters (C500, alpha, beta, gamma, P0 = 1.18, 0.86, 3.67, 0.67, 4.29). We also use the X-ray data to define cool-core and disturbed subsamples of clusters, and we constrain the average pressure profiles of each of these subsamples. We find that given the precision of our data the average pressure profiles of disturbed and cool-core clusters are consistent with one another at R>~0.15R500, with cool-core systems showing indications of higher pressure at R<~0.15R500. In addition, for the first time, we place simultaneous constraints on the mass scaling of cluster pressure profiles, their ensemble mean profile, and their radius-dependent intrinsic scatter between 0.1R500 and 2.0R500. The scatter among profiles is minimized at radii between ~0.2R500 and ~0.5R500, with a value of ~20%. The best-fit mass scaling has a power-law slope of 0.49, which is shallower than the nominal prediction of 2/3 from self-similar hydrostatic equilibrium models. These results for the intrinsic scatter and mass scaling are largely consistent with previous analyses, most of which have relied heavily on X-ray derived pressures of clusters at significantly lower masses and redshifts compared to our sample.
371 - Kaustuv Basu 2010
We present results from a joint X-ray/Sunyaev-Zeldovich modeling of the intra-cluster gas using XMM-Newton and APEX-SZ imaging data. The goal is to study the physical properties of the intra-cluster gas with a non-parametric de-projection method that is, aside from the assumption of spherical symmetry, free from modeling bias. We demonstrate a decrease of gas temperature in the cluster outskirts, and also measure the gas entropy profile, both of which are obtained for the first time independently of X-ray spectroscopy, using Sunyaev-Zeldovich and X-ray imaging data. The contribution of the APEX-SZ systematic uncertainties in measuring the gas temperature at large radii is shown to be small compared to the XMM-Newton and Chandra systematic spectroscopic errors.
153 - R. Fusco-Femiano 2012
The Planck collaboration has recently published precise and resolved measurements of the Sunyaev-Zeldovich effect in Abell 1656 (the Coma cluster of galaxies), so directly gauging the electron pressure profile in the intracluster plasma. On the other hand, such a quantity may be also derived from combining the density and temperature provided by X-ray observations of the thermal bremsstrahlung radiation emitted by the plasma. We find a model-independent tension between the SZ and the X-ray pressure, with the SZ one being definitely lower by 15-20%. We propose that such a challenging tension can be resolved in terms of an additional, non-thermal support to the gravitational equilibrium of the intracluster plasma. This can be straightforwardly included in our Supermodel, so as to fit in detail the Planck SZ profile while being consistent with the X-ray observables. Possible origins of the nonthermal component include cosmic-ray protons, ongoing turbulence, and relativistic electrons; given the existing observational constraints on the first two options, here we focus on the third. For this to be effective, we find that the electron population must include not only an energetic tail accelerated to gamma> 10^3 responsible for the Coma radiohalo, but also many more, lower energy electrons. The electron acceleration is to be started by merging events similar to those which provided the very high central entropy of the thermal intracluster plasma in Coma.
121 - N.G. Czakon , J. Sayers , A. Mantz 2014
We present scaling relations between the integrated Sunyaev-Zeldovich Effect (SZE) signal, $Y_{rm SZ}$, its X-ray analogue, $Y_{rm X}equiv M_{rm gas}T_{rm X}$, and total mass, $M_{rm tot}$, for the 45 galaxy clusters in the Bolocam X-ray-SZ (BOXSZ) sample. All parameters are integrated within $r_{2500}$. $Y_{2500}$ values are measured using SZE data collected with Bolocam, operating at 140 GHz at the Caltech Submillimeter Observatory (CSO). The temperature, $T_{rm X}$, and mass, $M_{rm gas,2500}$, of the intracluster medium are determined using X-ray data collected with Chandra, and $M_{rm tot}$ is derived from $M_{rm gas}$ assuming a constant gas mass fraction. Our analysis accounts for several potential sources of bias, including: selection effects, contamination from radio point sources, and the loss of SZE signal due to noise filtering and beam-smoothing effects. We measure the $Y_{2500}$--$Y_{rm X}$ scaling to have a power-law index of $0.84pm0.07$, and a fractional intrinsic scatter in $Y_{2500}$ of $(21pm7)%$ at fixed $Y_{rm X}$, both of which are consistent with previous analyses. We also measure the scaling between $Y_{2500}$ and $M_{2500}$, finding a power-law index of $1.06pm0.12$ and a fractional intrinsic scatter in $Y_{2500}$ at fixed mass of $(25pm9)%$. While recent SZE scaling relations using X-ray mass proxies have found power-law indices consistent with the self-similar prediction of 5/3, our measurement stands apart by differing from the self-similar prediction by approximately 5$sigma$. Given the good agreement between the measured $Y_{2500}$--$Y_{rm X}$ scalings, much of this discrepancy appears to be caused by differences in the calibration of the X-ray mass proxies adopted for each particular analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا