Do you want to publish a course? Click here

Improved determination of the Higgs mass in the MSSM with heavy superpartners

118   0   0.0 ( 0 )
 Added by Pietro Slavich
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We present several advances in the effective field theory calculation of the Higgs mass in MSSM scenarios with heavy superparticles. In particular, we compute the dominant two-loop threshold corrections to the quartic Higgs coupling for generic values of the relevant SUSY-breaking parameters, including all contributions controlled by the strong gauge coupling and by the third-family Yukawa couplings. We also study the effects of a representative subset of dimension-six operators in the effective theory valid below the SUSY scale. Our results will allow for an improved determination of the Higgs mass and of the associated theoretical uncertainty.



rate research

Read More

We improve the determination of the Higgs-boson mass in the MSSM with heavy superpartners, by computing the two-loop threshold corrections to the quartic Higgs coupling that involve both the strong and the electroweak gauge couplings. Combined with earlier results, this completes the calculation of the two-loop QCD corrections to the quartic coupling at the SUSY scale. We also compare different computations of the relation between the quartic coupling and the pole mass of the Higgs boson at the EW scale. We find that the numerical impact of the new corrections on the prediction for the Higgs mass is modest, but comparable to the accuracy of the Higgs-mass measurement at the LHC.
The parameter space of the Constrained Minimal supersymmetric Standard Model is considered. It is shown that for the particular choice of parameters there are some regions where long-living charged superparticles exist. Two regions of interest are the co-annihilation region with light staus, and the region with large negative trilinear scalar coupling A distinguished by light stops. The phenomenology of long-living superparticles is briefly discussed.
We perform a parameter scan of the phenomenological Minimal Supersymmetric Standard Model (pMSSM) with eight parameters taking into account the experimental Higgs boson results from Run I of the LHC and further low-energy observables. We investigate various MSSM interpretations of the Higgs signal at 125 GeV. First, we consider the case where the light CP-even Higgs boson of the MSSM is identified with the discovered Higgs boson. In this case it can impersonate the SM Higgs-like signal either in the decoupling limit, or in the limit of alignment without decoupling. In the latter case, the other states in the Higgs sector can also be light, offering good prospects for upcoming LHC searches and for searches at future colliders. Second, we demonstrate that the heavy CP-even Higgs boson is still a viable candidate to explain the Higgs signal - albeit only in a highly constrained parameter region, that will be probed by LHC searches for the CP-odd Higgs boson and the charged Higgs boson in the near future. As a guidance for such searches we provide new benchmark scenarios that can be employed to maximize the sensitivity of the experimental analysis to this interpretation.
Predictions for the Higgs masses are a distinctive feature of supersymmetric extensions of the Standard Model, where they play a crucial role in constraining the parameter space. The discovery of a Higgs boson and the remarkably precise measurement of its mass at the LHC have spurred new efforts aimed at improving the accuracy of the theoretical predictions for the Higgs masses in supersymmetric models. The Precision SUSY Higgs Mass Calculation Initiative (KUTS) was launched in 2014 to provide a forum for discussions between the different groups involved in these efforts. This report aims to present a comprehensive overview of the current status of Higgs-mass calculations in supersymmetric models, to document the many advances that were achieved in recent years and were discussed during the KUTS meetings, and to outline the prospects for future improvements in these calculations.
81 - Henning Bahl 2019
Different approaches are used for the calculation of the SM-like Higgs boson mass in the MSSM: the fixed-order diagrammatic approach is accurate for low SUSY scales; the EFT approach,for high SUSY scales. Hybrid approaches, combining fixed-order and EFT calculations, allow to obtain a precise prediction also for intermediary SUSY scales. Here, we briefly discuss the hybrid approach implemented into the code FeynHiggs. In addition, we show how the refined Higgs mass prediction was used to define new MSSM Higgs benchmark scenarios.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا