No Arabic abstract
We report on the design and construction of a high-energy photon polarimeter for measuring the degree of polarization of a linearly-polarized photon beam. The photon polarimeter uses the process of pair production on an atomic electron (triplet production). The azimuthal distribution of scattered atomic electrons following triplet production yields information regarding the degree of linear polarization of the incident photon beam. The polarimeter, operated in conjunction with a pair spectrometer, uses a silicon strip detector to measure the recoil electron distribution resulting from triplet photoproduction in a beryllium target foil. The analyzing power $Sigma_A$ for the device using a 75 $rm{mu m}$ beryllium converter foil is about 0.2, with a relative systematic uncertainty in $Sigma_A$ of 1.5%.
The CUORE experiment will search for neutrinoless double-beta decay of $^{130}$Te with an array of 988 TeO$_2$ bolometers arranged in 19 towers. CUORE-0, the first tower assembled according to the CUORE procedures, was built and commissioned at Laboratori Nazionali del Gran Sasso, and took data from March 2013 to March 2015. In this paper we describe the design, construction and operation of the CUORE-0 experiment, with an emphasis on the improvements made over a predecessor experiment, Cuoricino. In particular, we demonstrate with CUORE-0 data that the design goals of CUORE are within reach.
A prototype of a new CsI(Tl) telescope, which will be used in the reaction studies of light isotopes with energy of several hundred AMeV, has been constructed and tested at the Institute of Modern Physics, Chinese Academy of Sciences. The telescope has a multi-layer structure and the range information will be obtained to improve the particle identification performance. This prototype has seven layers of different thickness. A 5.0% (FWHM) energy resolution has been extracted for one of the layers in a beam test experiment. Obvious improvement for the identification of $^{14}$O and $^{15}$O isotopes was achieved by using the range information.
This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported.
A high quality beam of linearly polarized photons of several GeV will become available with the coherent bremsstrahlung technique at JLab. We have developed a polarimeter which requires about two meters of the beam line, has an analyzing power of 20% and an efficiency of 0.02%. The layout and first results of a polarimeter test on the laser back-scattering photon beam at SPring-8/LEPS are presented.
The pion-production target that serves the MICE Muon Beam consists of a titanium cylinder that is dipped into the halo of the ISIS proton beam. The design and construction of the MICE target system are described along with the quality-assurance procedures, electromagnetic drive and control systems, the readout electronics, and the data-acquisition system. The performance of the target is presented together with the particle rates delivered to the MICE Muon Beam. Finally, the beam loss in ISIS generated by the operation of the target is evaluated as a function of the particle rate, and the operating parameters of the target are derived.