Segal-Bargmann transform: the $q$-deformation


Abstract in English

We give identifications of the $q$-deformed Segal-Bargmann transform and define the Segal-Bargmann transform on mixed $q$-Gaussian variables. We prove that, when defined on the random matrix model of Sniady for the $q$-Gaussian variable, the classical Segal-Bargmann transform converges to the $q$-deformed Segal-Bargmann transform in the large $N$ limit. We also show that the $q$-deformed Segal-Bargmann transform can be recovered as a limit of a mixture of classical and free Segal-Bargmann transform.

Download