Do you want to publish a course? Click here

Producing the Deuteron in Stars: Anthropic Limits on Fundamental Constants

190   0   0.0 ( 0 )
 Added by Luke Barnes
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Stellar nucleosynthesis proceeds via the deuteron (D), but only a small change in the fundamental constants of nature is required to unbind it. Here, we investigate the effect of altering the binding energy of the deuteron on proton burning in stars. We find that the most definitive boundary in parameter space that divides probably life-permitting universes from probably life-prohibiting ones is between a bound and unbound deuteron. Due to neutrino losses, a ball of gas will undergo rapid cooling or stabilization by electron degeneracy pressure before it can form a stable, nuclear reaction-sustaining star. We also consider a less-bound deuteron, which changes the energetics of the $pp$ and $pep$ reactions. The transition to endothermic $pp$ and $pep$ reactions, and the resulting beta-decay instability of the deuteron, do not seem to present catastrophic problems for life.



rate research

Read More

We investigate the effect of a variation of fundamental constants on primordial element production in Big Bang nucleosynthesis (BBN). We focus on the effect of a possible change in the nucleon-nucleon interaction on nuclear reaction rates involving the A=5 (5Li and 5He) and A=8 (8Be) unstable nuclei. The reaction rates for 3He(d,p)4He and 3H(d,n)4He are dominated by the properties of broad analog resonances in 5Li and 5He compound nuclei respectively. While the triple-alpha process 4He(aa,g)12C is normally not effective in BBN, its rate is very sensitive to the position of the Hoyle state and could in principle be drastically affected if 8Be were stable during BBN. We found that the effect of the variation of constants on the 3He(d,p)4He, 3H(d,n)4He nd 4He(aa,g)12C reaction rates is not sufficient to induce a significant effect on BBN, even with a stable 8Be. The main influences come from the weak rates and the A=2, n(p,g)d, bottleneck reaction.
The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span different scales and probe the state of the Universe at different epochs. In the context of cosmology, both the cosmic microwave background and the Lyman-$alpha$ forest have proven to be powerful tools capable of constraining variations in electromagnetism, however at the moment there do not exist cosmological probes capable of bridging the gap between recombination and reionization. In the near future, radio telescopes will attempt to measure the 21cm transition of neutral hydrogen during the epochs of reionization and the cosmic dawn (and potentially the tail end of the dark ages); being inherently sensitive to electromagnetic phenomena, these experiments will offer a unique perspective on space-time variations of the fine-structure constant and the electron mass. We show here that large variations in these fundamental constants would produce features on the 21cm power spectrum that may be distinguishable from astrophysical uncertainties. Furthermore, we forecast the sensitivity for the Square Kilometer Array, and show that the 21cm power spectrum may be able to constrain variations at the level of ${cal O}(10^{-3})$.
90 - Rodger I. Thompson 2016
Astronomical observations have a unique ability to determine the laws of physics at distant times in the universe. They, therefore, have particular relevance in answering the basic question as to whether the laws of physics are invariant with time. The dimesionless fundamental constants, such as the proton to electron mass ratio and the fine structure constant are key elements in the investigation. If they vary with time then the answer is clearly that the laws of physics are not invariant with time and significant new physics must be developed to describe the universe. Limits on their variance, on the other hand, constrains the parameter space available to new physics that requires a variation with time of basic physical law. There are now observational constraints on the time variation of the proton to electron mass ratio mu at the 1.E-7 level. Constraints on the variation of the fine structure constant alpha are less rigorous, 1E-5, but are imposed at higher redshift. The implications of these limits on new cosmologies that require rolling scalar fields has already had its first investigations. Here we address the implications on basic particle physics. The proton to electron mass ratio is obviously dependent on the particle physics parameters that set the mass of the proton and the electron. To first order the ratio is dependent on a combination of the Quantum Chromodynamic scale, the Yukawa couplings, and the Higgs Vacuum Expectation Value. Here that relationship is quantitative defined for the first time. When coupled with previous determinations of the relation of the fine structure constant to the same parameters two constraints exist on the fractional variation of these parameters with time. A third independent constraint involving only the three parameters could set the stage for constraints on their individual fractional variation.
Atomic microwave clocks based on hyperfine transitions, such as the caesium standard, tick with a frequency that is proportional to the magnetic moment of the nucleus. This magnetic moment varies strongly between isotopes of the same atom, while all atomic electron parameters remain the same. Therefore the comparison of two microwave clocks based on different isotopes of the same atom can be used to constrain variation of fundamental constants. In this paper we calculate the neutron and proton contributions to the nuclear magnetic moments, as well as their sensitivity to any potential quark mass variation, in a number of isotopes of experimental interest including 201,199Hg and 87,85Rb, where experiments are underway. We also include a brief treatment of the dependence of the hyperfine transitions to variation in nuclear radius, which in turn is proportional to any change in quark mass. Our calculations of expectation-values of proton and neutron spin in nuclei are also needed to interpret measurements of violations of fundamental symmetries.
171 - P. Bonifacio 2013
Absorption-line systems detected in high resolution quasar spectra can be used to compare the value of dimensionless fundamental constants such as the fine-structure constant, alpha, and the proton-to-electron mass ratio, mu = m_p/m_e, as measured in remote regions of the Universe to their value today on Earth. In recent years, some evidence has emerged of small temporal and also spatial variations in alpha on cosmological scales which may reach a fractional level of 10 ppm . We are conducting a Large Programme of observations with VLT UVES to explore these variations. We here provide a general overview of the Large Programme and report on the first results for these two constants, discussed in detail in Molaro et al. and Rahmani et al. A stringent bound for Delta(alpha)/Alpha is obtained for the absorber at_abs = 1.6919 towards HE 2217-2818. The absorption profile is complex with several very narrow features, and is modeled with 32 velocity components. The relative variation in alpha in this system is +1.3+-2.4_{stat}+-1.0_{sys} ppm if Al II lambda 1670AA and three Fe II transitions are used, and +1.1+-2.6_{stat} ppm in a lightly different analysis with only Fe II transitions used. The expectation at this sky position of the recently-reported dipolar variation of alpha is (3.2--5.4)+-1.7 ppm depending on dipole model. This constraint of Delta(alpha)/alpha at face value is not supporting this expectation but is not inconsistent with it at the 3 sigma level. For the proton-to-electron mass ratio the analysis of the H_2 absorption lines of the z_{abs}~2.4018 damped Ly alpha system towards HE 0027- 1836 provides Delta(mu)/mu = (-7.6 +- 8.1_{stat} +- 6.3_{sys}) ppm which is also consistent with a null variation. (abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا