Do you want to publish a course? Click here

Boosting Dilated Convolutional Networks with Mixed Tensor Decompositions

276   0   0.0 ( 0 )
 Added by Nadav Cohen
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The driving force behind deep networks is their ability to compactly represent rich classes of functions. The primary notion for formally reasoning about this phenomenon is expressive efficiency, which refers to a situation where one network must grow unfeasibly large in order to realize (or approximate) functions of another. To date, expressive efficiency analyses focused on the architectural feature of depth, showing that deep networks are representationally superior to shallow ones. In this paper we study the expressive efficiency brought forth by connectivity, motivated by the observation that modern networks interconnect their layers in elaborate ways. We focus on dilated convolutional networks, a family of deep models delivering state of the art performance in sequence processing tasks. By introducing and analyzing the concept of mixed tensor decompositions, we prove that interconnecting dilated convolutional networks can lead to expressive efficiency. In particular, we show that even a single connection between intermediate layers can already lead to an almost quadratic gap, which in large-scale settings typically makes the difference between a model that is practical and one that is not. Empirical evaluation demonstrates how the expressive efficiency of connectivity, similarly to that of depth, translates into gains in accuracy. This leads us to believe that expressive efficiency may serve a key role in the development of new tools for deep network design.



rate research

Read More

The driving force behind convolutional networks - the most successful deep learning architecture to date, is their expressive power. Despite its wide acceptance and vast empirical evidence, formal analyses supporting this belief are scarce. The primary notions for formally reasoning about expressiveness are efficiency and inductive bias. Expressive efficiency refers to the ability of a network architecture to realize functions that require an alternative architecture to be much larger. Inductive bias refers to the prioritization of some functions over others given prior knowledge regarding a task at hand. In this paper we overview a series of works written by the authors, that through an equivalence to hierarchical tensor decompositions, analyze the expressive efficiency and inductive bias of various convolutional network architectural features (depth, width, strides and more). The results presented shed light on the demonstrated effectiveness of convolutional networks, and in addition, provide new tools for network design.
67 - Jinmian Ye , Guangxi Li , Di Chen 2020
Deep neural networks (DNNs) have achieved outstanding performance in a wide range of applications, e.g., image classification, natural language processing, etc. Despite the good performance, the huge number of parameters in DNNs brings challenges to efficient training of DNNs and also their deployment in low-end devices with limited computing resources. In this paper, we explore the correlations in the weight matrices, and approximate the weight matrices with the low-rank block-term tensors. We name the new corresponding structure as block-term tensor layers (BT-layers), which can be easily adapted to neural network models, such as CNNs and RNNs. In particular, the inputs and the outputs in BT-layers are reshaped into low-dimensional high-order tensors with a similar or improved representation power. Sufficient experiments have demonstrated that BT-layers in CNNs and RNNs can achieve a very large compression ratio on the number of parameters while preserving or improving the representation power of the original DNNs.
In a previous work we have detailed the requirements to obtain a maximal performance benefit by implementing fully connected deep neural networks (DNN) in form of arrays of resistive devices for deep learning. This concept of Resistive Processing Unit (RPU) devices we extend here towards convolutional neural networks (CNNs). We show how to map the convolutional layers to RPU arrays such that the parallelism of the hardware can be fully utilized in all three cycles of the backpropagation algorithm. We find that the noise and bound limitations imposed due to analog nature of the computations performed on the arrays effect the training accuracy of the CNNs. Noise and bound management techniques are presented that mitigate these problems without introducing any additional complexity in the analog circuits and can be addressed by the digital circuits. In addition, we discuss digitally programmable update management and device variability reduction techniques that can be used selectively for some of the layers in a CNN. We show that combination of all those techniques enables a successful application of the RPU concept for training CNNs. The techniques discussed here are more general and can be applied beyond CNN architectures and therefore enables applicability of RPU approach for large class of neural network architectures.
We introduce a convolutional neural network that operates directly on graphs. These networks allow end-to-end learning of prediction pipelines whose inputs are graphs of arbitrary size and shape. The architecture we present generalizes standard molecular feature extraction methods based on circular fingerprints. We show that these data-driven features are more interpretable, and have better predictive performance on a variety of tasks.
The conventional classification schemes -- notably multinomial logistic regression -- used in conjunction with convolutional networks (convnets) are classical in statistics, designed without consideration for the usual coupling with convnets, stochastic gradient descent, and backpropagation. In the specific application to supervised learning for convnets, a simple scale-invariant classification stage turns out to be more robust than multinomial logistic regression, appears to result in slightly lower errors on several standard test sets, has similar computational costs, and features precise control over the actual rate of learning. Scale-invariant means that multiplying the input values by any nonzero scalar leaves the output unchanged.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا