Do you want to publish a course? Click here

On an identity for H-function

272   0   0.0 ( 0 )
 Added by Arjun Kumar Rathie
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

The main objective of this research note is to provide an identity for the H-function, which generalizes two identities involving H-function obtained earlier by Rathie and Rathie et al.



rate research

Read More

Using generalized hypergeometric functions to perform symbolic manipulation of equations is of great importance to pure and applied scientists. There are in the literature a great number of identities for the Meijer-G function. On the other hand, when more complex expressions arise, the latter function is not capable of representing them. The H-function is an alternative to overcome this issue, as it is a generalization of the Meijer-G function. In the present paper, a new identity for the H-function is derived. In short, this result enables one to split a particular H-function into the sum of two other H-functions. The new relation in addition to an old result are applied to the summation of hypergeometric series. Finally, some relations between H-functions and elementary functions are built
74 - Dan Li , Junfeng Li , Jie Xiao 2019
This paper shows $$ sup_{fin H^s(mathbb{R}^n)}dim _Hleft{xinmathbb{R}^n: lim_{trightarrow0}e^{it(-Delta)^alpha}f(x) eq f(x)right}leq n+1-frac{2(n+1)s}{n} text{under} begin{cases} ngeq2; alpha>frac12; frac{n}{2(n+1)}<sleqfrac{n}{2} . end{cases} $$
In this paper we investigate the $L^p$ boundedness of the lacunary maximal function $ M_{Ha}^{lac} $ associated to the spherical means $ A_r f$ taken over Koranyi spheres on the Heisenberg group. Closely following an approach used by M. Lacey in the Euclidean case, we obtain sparse bounds for these maximal functions leading to new unweighted and weighted estimates. The key ingredients in the proof are the $L^p$ improving property of the operator $A_rf$ and a continuity property of the difference $A_rf-tau_y A_rf$, where $tau_yf(x)=f(xy^{-1})$ is the right translation operator.
67 - Beno^it F. Sehba 2017
In the two-parameter setting, we say a function belongs to the mean little $BMO$, if its mean over any interval and with respect to any of the two variables has uniformly bounded mean oscillation. This space has been recently introduced by S. Pott and the author in relation with the multiplier algebra of the product $BMO$ of Chang-Fefferman. We prove that the Cotlar-Sadosky space of functions of bounded mean oscillation $bmo(mathbb{T}^N)$ is a strict subspace of the mean little $BMO$.
This paper is devoted to the study of the relatively compact sets in Quasi-Banach function spaces, providing an important improvement of the known results. As an application, we take the final step in establishing a relative compactness criteria for function spaces with any weight without any assumption.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا