No Arabic abstract
Consumer demand for plant and animal products threatens many populations with extinction. The anthropogenic Allee effect (AAE) proposes that such extinctions can be caused by prices for wildlife products increasing with species rarity. This price-rarity relationship creates financial incentives to extract the last remaining individuals of a population, despite higher search and harvest costs. The AAE has become a standard approach for conceptualizing the threat of economic markets on endangered species. Despite its potential importance for conservation, AAE theory is based on a simple graphical model with limited analysis of possible population trajectories. By specifying a general class of functions for price-rarity relationships, we show that the classic theory can understate the risk of species extinction. AAE theory proposes that only populations below a critical Allee threshold will go extinct due to increasing price-rarity relationships. Our analysis shows that this threshold can be much higher than the original theory suggests, depending on initial harvest effort. More alarmingly, even species with population sizes above this Allee threshold, for which AAE predicts persistence, can be destined to extinction. Introducing even a minimum price for harvested individuals, close to zero, can cause large populations to cross the classic anthropogenic Allee threshold on a trajectory towards extinction. These results suggest that traditional AAE theory may give a false sense of security when managing large harvested populations.
We consider the dynamics of a three-species system incorporating the Allee Effect, focussing on its influence on the emergence of extreme events in the system. First we find that under Allee effect the regular periodic dynamics changes to chaotic. Further, we find that the system exhibits unbounded growth in the vegetation population after a critical value of the Allee parameter. The most significant finding is the observation of a critical Allee parameter beyond which the probability of obtaining extreme events becomes non-zero for all three population densities. Though the emergence of extreme events in the predator population is not affected much by the Allee effect, the prey population shows a sharp increase in the probability of obtaining extreme events after a threshold value of the Allee parameter, and the vegetation population also yields extreme events for sufficiently strong Allee effect. Lastly we consider the influence of additive noise on extreme events. First, we find that noise tames the unbounded vegetation growth induced by Allee effect. More interestingly, we demonstrate that stochasticity drastically diminishes the probability of extreme events in all three populations. In fact for sufficiently high noise, we do not observe any more extreme events in the system. This suggests that noise can mitigate extreme events, and has potentially important bearing on the observability of extreme events in naturally occurring systems.
We study the extinction risk of a fragmented population residing on a network of patches coupled by migration, where the local patch dynamics include the Allee effect. We show that mixing between patches dramatically influences the populations viability. Slow migration is shown to always increase the populations global extinction risk compared to the isolated case. At fast migration, we demonstrate that synchrony between patches minimizes the populations extinction risk. Moreover, we discover a critical migration rate that maximizes the extinction risk of the population, and identify an early-warning signal when approaching this state. Our theoretical results are confirmed via the highly-efficient weighted ensemble method. Notably, our analysis can also be applied to studying switching in gene regulatory networks with multiple transcriptional states.
Two species with similar resource requirements respond in a characteristic way to variations in their habitat -- their abundances rise and fall in concert. We use this idea to learn how bacterial populations in the microbiota respond to habitat conditions that vary from person-to-person across the human population. Our mathematical framework shows that habitat fluctuations are sufficient for explaining intra-bodysite correlations in relative species abundances from the Human Microbiome Project. We explicitly show that the relative abundances of phylogenetically related species are positively correlated and can be predicted from taxonomic relationships. We identify a small set of functional pathways related to metabolism and maintenance of the cell wall that form the basis of a common resource sharing niche space of the human microbiota.
The growth of a population divided among spatial sites, with migration between the sites, is sometimes modelled by a product of random matrices, with each diagonal elements representing the growth rate in a given time period, and off-diagonal elements the migration rate. The randomness of the matrices then represents stochasticity of environmental conditions. We consider the case where the off-diagonal elements are small, representing a situation where migration has been introduced into an otherwise sessile meta-population. We examine the asymptotic behaviour of the long-term growth rate. When there is a single site with the highest growth rate, under the assumption of Gaussian log growth rates at the individual sites (or having Gaussian-like tails) we show that the behavior near zero is like a power of $epsilon$, and derive upper and lower bounds for the power in terms of the difference in the growth rates and the distance between the sites. In particular, when the difference in mean log growth rate between two sites is sufficiently small, or the variance of the difference between the sites sufficiently large, migration will always be favored by natural selection, in the sense that introducing a small amount of migration will increase the growth rate of the population relative to the zero-migration case.
We study simple stochastic scenarios, based on birth-and-death Markovian processes, that describe populations with Allee effect, to account for the role of demographic stochasticity. In the mean-field deterministic limit we recover well-known deterministic evolution equations widely employed in population ecology. The mean-time to extinction is in general obtained by the Wentzel-Kramers-Brillouin (WKB) approximation for populations with strong and weak Allee effects. An exact solution for the mean time to extinction can be found via a recursive equation for special cases of the stochastic dynamics. We study the conditions for the validity of the WKB solution and analyze the boundary between the weak and strong Allee effect by comparing exact solutions with numerical simulations.