Do you want to publish a course? Click here

Ga-polar (In,Ga)N/GaN quantum wells vs. N-polar (In,Ga)N quantum disks in GaN nanowires: Comparative analysis of carrier recombination, diffusion, and radiative efficiency

159   0   0.0 ( 0 )
 Added by Felix Feix
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the radiative and nonradiative recombination processes in planar (In,Ga)N/GaN(0001) quantum wells and (In,Ga)N quantum disks embedded in GaN$(000bar{1})$ nanowires using photoluminescence spectroscopy under both continuous-wave and pulsed excitation. The photoluminescence intensities of these two samples quench only slightly between 10 and 300 K, which is commonly taken as evidence for high internal quantum efficiencies. However, a side-by-side comparison shows that the absolute intensity of the Ga-polar quantum wells is two orders of magnitude higher than that of the N-polar quantum disks. A similar difference is observed for the initial decay time of photoluminescence transients obtained by time-resolved measurements, indicating the presence of a highly efficient nonradiative decay channel for the quantum disks. In apparent contradiction to this conjecture, the decay of both samples is observed to slow down dramatically after the initial rapid decay. Independent of temperature, the transients approach a power law for longer decay times, reflecting that recombination occurs between individual electrons and holes with varying spatial separation. Employing a coupled system of stochastic integro-differential equations taking into account both radiative and nonradiative Shockley-Read-Hall recombination of spatially separate electrons and holes as well as their diffusion, we obtain simulated transients matching the experimentally obtained ones. The results reveal that even dominant nonradiative recombination conserves the power law decay for (In,Ga)N/GaN{0001} quantum wells and disks.



rate research

Read More

We investigate the transport of dipolar indirect excitons along the growth plane of polar (Al,Ga)N/GaN quantum well structures by means of spatially- and time-resolved photoluminescence spectroscopy. The transport in these strongly disordered quantum wells is activated by dipole-dipole repulsion. The latter induces an emission blue shift that increases linearly with exciton density, whereas the radiative recombination rate increases exponentially. Under continuous, localized excitation, we measure a continuous red shift of the emission, as excitons propagate away from the excitation spot. This shift corresponds to a steady-state gradient of exciton density, measured over several tens of micrometers. Time-resolved micro-photoluminescence experiments provide information on the dynamics of recombination and transport of dipolar excitons. We account for the ensemble of experimental results by solving the nonlinear drift-diffusion equation. Quantitative analysis suggests that in such structures, exciton propagation on the scale of 10 to 20 microns is mainly driven by diffusion, rather than by drift, due to the strong disorder and the presence of nonradiative defects. Secondary exciton creation, most probably by the intense higher-energy luminescence, guided along the sample plane, is shown to contribute to the exciton emission pattern on the scale up to 100 microns. The exciton propagation length is strongly temperature dependent, the emission being quenched beyond a critical distance governed by nonradiative recombination.
Several of the key issues of planar (Al,Ga)N-based deep-ultraviolet light emitting diodes could potentially be overcome by utilizing nanowire heterostructures, exhibiting high structural perfection and improved light extraction. Here, we study the spontaneous emission of GaN/(Al,Ga)N nanowire ensembles grown on Si(111) by plasma-assisted molecular beam epitaxy. The nanowires contain single GaN quantum disks embedded in long (Al,Ga)N nanowire segments essential for efficient light extraction. These quantum disks are found to exhibit intense emission at unexpectedly high energies, namely, significantly above the GaN bandgap, and almost independent of the disk thickness. An in-depth investigation of the actual structure and composition of the nanowires reveals a spontaneously formed Al gradient both along and across the nanowire, resulting in a complex core/shell structure with an Al deficient core and an Al rich shell with continuously varying Al content along the entire length of the (Al,Ga)N segment. This compositional change along the nanowire growth axis induces a polarization doping of the shell that results in a degenerate electron gas in the disk, thus screening the built-in electric fields. The high carrier density not only results in the unexpectedly high transition energies, but also in radiative lifetimes depending only weakly on temperature, leading to a comparatively high internal quantum efficiency of the GaN quantum disks up to room temperature.
For nitride-based InGaN and AlGaN quantum well (QW) LEDs, the potential fluctuations caused by natural alloy disorders limit the lateral intra-QW carrier diffusion length and current spreading. The diffusion length mainly impacts the overall LED efficiency through sidewall nonradiative recombination, especially for $mu$LEDs. In this paper, we study the carrier lateral diffusion length for nitride-based green, blue, and ultraviolet C (UVC) QWs in three dimensions. We solve the Poisson and drift-diffusion equations in the framework of localization landscape theory. The full three-dimensional model includes the effects of random alloy composition fluctuations and electric fields in the QWs. The dependence of the minority carrier diffusion length on the majority carrier density is studied with a full three-dimensional model. The results show that the diffusion length is limited by the potential fluctuations and the recombination rate, the latter being controlled by the polarization-induced electric field in the QWs and by the screening of the internal electric fields by carriers.
130 - Uttam Singisetti 2013
N-polar GaN channel mobility is important for high frequency device applications. In this Letter, we report the theoretical calculations on the surface optical (SO) phonon scattering rate of two-dimensional electron gas (2-DEG) in N-polar GaN quantum well channels with high-k dielectrics. The effect of SO phonons on 2-DEG mobility was found to be small at >5 nm channel thickness. However, the SO mobility in 3 nm N-polar GaN channels with high-k dielectrics is low and limits the total mobility. The SO scattering for SiNx dielectric GaN was found to be negligible due to its high SO phonon energy.
The surface-enhanced Raman scattering in graphene deposited on AlxGa1-xN/GaN axial heterostructure nanowires was investigated. The intensity of graphene Raman spectra was found not to be correlated with aluminium content. Analysis of graphene Raman bands parameters, KPFM and electroreflectance showed a screening of polarization charges. Theoretical calculations showed that plasmon resonance in graphene is far beyond the Raman spectral range. This excludes the presence of an electromagnetic mechanism of SERS and therefore suggests the chemical mechanism of enhancement.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا