No Arabic abstract
We investigate cosmic string networks in the Abelian Higgs model using data from a campaign of large-scale numerical simulations on lattices of up to $4096^3$ grid points. We observe scaling or self-similarity of the networks over a wide range of scales, and estimate the asymptotic values of the mean string separation in horizon length units $dot{xi}$ and of the mean square string velocity $bar v^2$ in the continuum and large time limits. The scaling occurs because the strings lose energy into classical radiation of the scalar and gauge fields of the Abelian Higgs model. We quantify the energy loss with a dimensionless radiative efficiency parameter, and show that it does not vary significantly with lattice spacing or string separation. This implies that the radiative energy loss underlying the scaling behaviour is not a lattice artefact, and justifies the extrapolation of measured network properties to large times for computations of cosmological perturbations. We also show that the core growth method, which increases the defect core width with time to extend the dynamic range of simulations, does not introduce significant systematic error. We compare $dot{xi}$ and $bar v^2$ to values measured in simulations using the Nambu-Goto approximation, finding that the latter underestimate the mean string separation by about 25%, and overestimate $bar v^2$ by about 10%. The scaling of the string separation implies that string loops decay by the emission of massive radiation within a Hubble time in field theory simulations, in contrast to the Nambu-Goto scenario which neglects this energy loss mechanism. String loops surviving for only one Hubble time emit much less gravitational radiation than in the Nambu-Goto scenario, and are consequently subject to much weaker gravitational wave constraints on their tension.
We study the approach to scaling in axion string networks in the radiation era, through measuring the root-mean-square velocity $v$ as well as the scaled mean string separation $x$. We find good evidence for a fixed point in the phase-space analysis in the variables $(x,v)$, providing a strong indication that standard scaling is taking place. We show that the approach to scaling can be well described by a two parameter velocity-one-scale (VOS) model, and show that the values of the parameters are insensitive to the initial state of the network. The string length has also been commonly expressed in terms of a dimensionless string length density $zeta$, proportional to the number of Hubble lengths of string per Hubble volume. In simulations with initial conditions far from the fixed point $zeta$ is still evolving after half a light-crossing time, which has been interpreted in the literature as a long-term logarithmic growth. We show that all our simulations, even those starting far from the fixed point, are accounted for by a VOS model with an asymptote of $zeta_*=1.20pm0.09$ (calculated from the string length in the cosmic rest frame) and $v_* = 0.609pm 0.014$.
In this letter we investigate gauge invariant scalar fluctuations of the metric in a non-perturbative formalism for a Higgs inflationary model recently introduced in the framework of a geometrical scalar-tensor theory of gravity. In this scenario the Higgs inflaton field has its origin in the Weyl scalar field of the background geometry. We found a nearly scale invariance of the power spectrum for linear scalar fluctuations of the metric. For certain parameters of the model we obtain values for the scalar spectral index $n_s$ and the scalar to tensor ratio $r$ that fit well with the Planck 2018 results. Besides we show that in this model the trans-planckian problem can be avoided.
We investigate cosmological constraints on phenomenological models with discrete gauge symmetries by discussing the radiation of standard model particles from Aharonov-Bohm strings. Using intersecting D-brane models in Type IIA string theory, we demonstrate that Aharonov-Bohm radiation, when combined with cosmological observations, imposes constraints on the compactification scales.
Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spacial curvature of the universe. This is because only such $ k=0 $ radiation solutions poses a homothetic Killimg vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved space time, and there are no deviations from standard gauge filed equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang Mills equations, for more general space times.
We consider a scalar field $phi$ whose coupling to the kinetic term of a non-abelian gauge field is set at an UV scale $M$. Then the confinement of the gauge sector will induce a $phi$-dependent vacuum energy which generates a dimensionful potential for the scalar. It provides a good example of dynamical generation of a new physics scale below $M$ through the vacuum expectation value $langle phi rangle$. This mechanism may shed light on the origin of dark matter, or spontaneous symmetry breaking applicable to the electroweak symmetry.