Do you want to publish a course? Click here

Superintegrability of the Fock-Darwin system

52   0   0.0 ( 0 )
 Added by Sengul Kuru
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Fock-Darwin system is analysed from the point of view of its symmetry properties in the quantum and classical frameworks. The quantum Fock-Darwin system is known to have two sets of ladder operators, a fact which guarantees its solvability. We show that for rational values of the quotient of two relevant frequencies, this system is superintegrable, the quantum symmetries being responsible for the degeneracy of the energy levels. These symmetries are of higher order and close a polynomial algebra. In the classical case, the ladder operators are replaced by ladder functions and the symmetries by constants of motion. We also prove that the rational classical system is superintegrable and its trajectories are closed. The constants of motion are also generators of symmetry transformations in the phase space that have been integrated for some special cases. These transformations connect different trajectories with the same energy. The coherent states of the quantum superintegrable system are found and they reproduce the closed trajectories of the classical one.



rate research

Read More

The Darwin-Howie-Whelan equations are commonly used to describe and simulate the scattering of fast electrons in transmission electron microscopy. They are a system of infinitely many envelope functions, derived from the Schrodinger equation. However, for the simulation of images only a finite set of envelope functions is used, leading to a system of ordinary differential equations in thickness direction of the specimen. We study the mathematical structure of this system and provide error estimates to evaluate the accuracy of special approximations, like the two-beam and the systematic-row approximation.
Families of three-body Hamiltonian systems in one dimension have been recently proved to be maximally superintegrable by interpreting them as one-body systems in the three-dimensional Euclidean space, examples are the Calogero, Wolfes and Tramblay Turbiner Winternitz systems. For some of these systems, we show in a new way how the superintegrability is associated with their dihedral symmetry in the three-dimensional space, the order of the dihedral symmetries being associated with the degree of the polynomial in the momenta first integrals. As a generalization, we introduce the analysis of integrability and superintegrability of four-body systems in one dimension by interpreting them as one-body systems with the symmetries of the Platonic polyhedra in the four-dimensional Euclidean space. The paper is intended as a short review of recent results in the sector, emphasizing the relevance of discrete symmetries for the superintegrability of the systems considered.
We study four particular 3-dimensional natural Hamiltonian systems defined in conformally Euclidean spaces. We prove their superintegrability and we obtain, in the four cases, the maximal number of functionally independent integrals of motion. The two first systems are related to the 3-dimensional isotropic oscillator and the superintegrability is quadratic. The third system is obtained as a continuous deformation of an oscillator with ratio of frequencies 1:1:2 and with three additional nonlinear terms of the form $k_2/x^2$, $k_3/y^2$ and $k_4/z^2$, and the fourth system is obtained as a deformation of the Kepler Hamiltonian also with these three particular nonlinear terms. These third and fourth systems are superintegrable but with higher-order constants of motion. The four systems depend on a real parameter in such a way that they are continuous functions of the parameter (in a certain domain of the parameter) and in the limit of such parameter going to zero the Euclidean dynamics is recovered.
The orbits and the dynamical symmetries for the screened Coulomb potentials and isotropic harmonic oscillators have been studied by Wu and Zeng [Z. B. Wu and J. Y. Zeng, Phys. Rev. A 62,032509 (2000)]. We find the similar properties in the responding systems in a spherical space, whose dynamical symmetries are described by Higgs Algebra. There exists a conserved aphelion and perihelion vector, which, together with angular momentum, constitute the generators of the geometrical symmetry group at the aphelia and perihelia points $(dot{r}=0)$.
We study the coherent state and two-mode squeezed state in the q-deformed Pegg-Barnett(PB) formalism. We show that when the truncation of the Fock space S is large enough, the phase properties of the q-deformed PB coherent state approach that of the undeformed PB coherent state. We also investigate the entanglement properties of the two-mode squeezed states in both the q-deformed and undeformed PB Fock space with the real squeezing parameter r. We see that if S is sufficiently large, the conventional two-mode squeezed states can be approximated with the PB (deformed and undeformed) states for arbitrary r. However, the value of S required increases more rapidly with the q-deformed PB states than the PB states as a function of r.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا