Anyonic self-induced disorder in a stabilizer code: quasi-many body localization in a translational invariant model


Abstract in English

We enquire into the quasi-many-body localization in topologically ordered states of matter, revolving around the case of Kitaev toric code on ladder geometry, where different types of anyonic defects carry different masses induced by environmental errors. Our study verifies that random arrangement of anyons generates a complex energy landscape solely through braiding statistics, which suffices to suppress the diffusion of defects in such multi-component anyonic liquid. This non-ergodic dynamic suggests a promising scenario for investigation of quasi-many-body localization. Computing standard diagnostics evidences that, in such disorder-free many-body system, a typical initial inhomogeneity of anyons gives birth to a glassy dynamics with an exponentially diverging time scale of the full relaxation. A by-product of this dynamical effect is manifested by the slow growth of entanglement entropy, with characteristic time scales bearing resemblance to those of inhomogeneity relaxation. This setting provides a new platform which paves the way toward impeding logical errors by self-localization of anyons in a generic, high energy state, originated in their exotic statistics.

Download