Do you want to publish a course? Click here

Assessment of two hybrid van der Waals density functionals for covalent and non-covalent binding of molecules

75   0   0.0 ( 0 )
 Added by Kristian Berland
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two hybrid van der Waals density functionals (vdW-DFs) are constructed using 25%, Fock exchange with i) the consistent-exchange vdW-DF-cx functional and ii) with the vdW-DF2 functional. The ability to describe covalent and non-covalent binding properties of molecules are assessed. For properties related to covalent binding, atomization energies (G2-1 set), molecular reaction energies (G2RC set), as well as ionization energies (G21IP set) are benchmarked against experimental reference values. We find that hybrid-vdW-DF-cx yields results that are rather similar to those of the standard non-empirical hybrid PBE0 [JCP 110, 6158 (1996)]. Hybrid vdW-DF2 follows somewhat different trends, showing on average significantly larger deviations from the reference energies, with a MAD of 14.5 kcal/mol for the G2-1 set. Non-covalent binding properties of molecules are assessed using the S22 benchmark set of non-covalently bonded dimers and the X40 set of dimers of small halogenated molecules, using wavefunction-based quantum chemistry results for references. For the S22 set, hybrid-vdW-DF-cx performs better than standard vdW-DF-cx for the mostly hydrogen-bonded systems. Hybrid-vdW-DF2 offers a slight improvement over standard vdW-DF2. Similar trends are found for the X40 set, with hybrid-vdW-DF-cx performing particularly well for binding involving the strongly polar hydrogen halides, but poorly for systems with tiny binding energies. Our study of the X40 set reveals both the potential of mixing Fock exchange with vdW-DF, but also highlights shortcomings of the hybrids constructed here. The solid performance of hybrid-vdW-DF-cx for covalent-bonded systems, as well as the strengths and issues uncovered for non-covalently bonded systems, makes this study a good starting point for developing even more precise hybrid vdW-DFs.



rate research

Read More

The nonlocal correlation energy in the van der Waals density functional (vdW-DF) method [Phys. Rev. Lett. 92, 246401 (2004); Phys. Rev. B 76, 125112 (2007); Phys. Rev. B 89, 035412 (2014)] can be interpreted in terms of a coupling of zero-point energies of characteristic modes of semilocal exchange-correlation (xc) holes. These xc holes reflect the internal functional in the framework of the vdW-DF method [Phys. Rev. B 82, 081101(2010)]. We explore the internal xc hole components, showing that they share properties with those of the generalized-gradient approximation. We use these results to illustrate the nonlocality in the vdW-DF description and analyze the vdW-DF formulation of nonlocal correlation.
Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which have no layered bulk analogues. These efforts have been focused mainly on the surface growth of molecules in high vacuum. Here, we report an approach to making 2D crystals of covalent solids by chemical conversion of van der Waals layers. As an example, we use 2D indium selenide (InSe) obtained by exfoliation and converted it by direct fluorination into indium fluoride (InF3), which has a non-layered, rhombohedral structure and therefore cannot be possibly obtained by exfoliation. The conversion of InSe into InF3 is found to be feasible for thicknesses down to three layers of InSe, and the obtained stable InF3 layers are doped with selenium. We study this new 2D material by optical, electron transport and Raman measurements and show that it is a semiconductor with a direct bandgap of 2.2 eV, exhibiting high optical transparency across the visible and infrared spectral ranges. We also demonstrate the scalability of our approach by chemical conversion of large-area, thin InSe laminates obtained by liquid exfoliation into InF3 films. The concept of chemical conversion of cleavable thin van der Waals crystals into covalently-bonded non-cleavable ones opens exciting prospects for synthesizing a wide variety of novel atomically thin covalent crystals.
Computationally-efficient semilocal approximations of density functional theory at the level of the local spin density approximation (LSDA) or generalized gradient approximation (GGA) poorly describe weak interactions. We show improved descriptions for weak bonds (without loss of accuracy for strong ones) from a newly-developed semilocal meta-GGA (MGGA), by applying it to molecules, surfaces, and solids. We argue that this improvement comes from using the right MGGA dimensionless ingredient to recognize all types of orbital overlap.
We study ultracold long-range collisions of heteronuclear alkali-metal dimers with a reservoir gas of alkali-metal Rydberg atoms in a two-photon laser excitation scheme. In a low density regime where molecules remain outside the Rydberg orbits of the reservoir atoms, we show that the two-photon photoassociation (PA) of the atom-molecule pair into a long-range bound trimer state is efficient over a broad range of atomic Rydberg channels. As a case study, we obtain the PA lineshapes for the formation of trimers composed of KRb molecules in the rovibrational ground state and excited Rb atoms in the asymptotic Rydberg levels $n^{2}S_j$ and $n^{2}D_j$, for $n=20-80$. We predict atom-molecule binding energies in the range $10-10^3$ kHz for the first vibrational state below threshold. The average trimer formation rate is order $10^8, {rm s}^{-1}$ at 1.0 $mu$K, and depends weakly on the principal quantum number $n$. Our results set the foundations for a broader understanding of exotic long range collisions of dilute molecules in ultracold atomic Rydberg reservoirs.
We present the idea and illustrate potential benefits of having a tool chain of closely related regular, unscreened and screened hybrid exchange-correlation (XC) functionals, all within the consistent formulation of the van der Waals density functional (vdW-DF) method [JPCM 32, 393001 (2020)]. Use of this chain of nonempirical XC functionals allows us to map when the inclusion of truly nonlocal exchange and of truly nonlocal correlation is important. Here we begin the mapping by addressing hard and soft material challenges: magnetic elements, perovskites, and biomolecular problems. We also predict the structure and polarization for a ferroelectric polymer. To facilitate this work and future broader explorations, we furthermore present a stress formulation for spin vdW-DF and illustrate use of a simple stability-modeling scheme to assert when the prediction of a soft mode (an imaginary-frequency vibrational mode, ubiquitous in perovskites and soft matter) implies a prediction of an actual low-temperature transformation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا