Do you want to publish a course? Click here

Sensing Noncollinear Magnetism at the Atomic Scale Combining Magnetic Exchange and Spin-Polarized Imaging

65   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force, with or without the flow of current, with a new method, which combines scanning tunneling microscopy and non-contact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nano-skyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to non-collinear magnetic structures, for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force which we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both non-perturbative readout combined with writing by current-driven reversal of atomic-scale magnets.

rate research

Read More

Tunneling is a fundamental quantum process with no classical equivalent, which can compete with Coulomb interactions to give rise to complex phenomena. Phosphorus dopants in silicon can be placed with atomic precision to address the different regimes arising from this competition. However, they exploit wavefunctions relying on crystal band symmetries, which tunneling interactions are inherently sensitive to. Here we directly image lattice-aperiodic valley interference between coupled atoms in silicon using scanning tunneling microscopy. Our atomistic analysis unveils the role of envelope anisotropy, valley interference and dopant placement on the Heisenberg spin exchange interaction. We find that the exchange can become immune to valley interference by engineering in-plane dopant placement along specific crystallographic directions. A vacuum-like behaviour is recovered, where the exchange is maximised to the overlap between the donor orbitals, and pair-to-pair variations limited to a factor of less than 10 considering the accuracy in dopant positioning. This robustness remains over a large range of distances, from the strongly Coulomb interacting regime relevant for high-fidelity quantum computation to strongly coupled donor arrays of interest for quantum simulation in silicon.
Spin transmission at ferromagnet/heavy metal interfaces is of vital importance for many spintronic devices. Usually the spin current transmission is limited by the spin mixing conductance and loss mechanisms such as spin memory loss. In order to understand these effects, we study the interface transmission when an insulating interlayer is inserted between the ferromagnet and the heavy metal. For this we measure the inverse spin Hall voltage generated from optically injected spin current pulses as well as the magnitude of the spin pumping using ferromagnetic resonance. From our results we conclude that significant spin memory loss only occurs for 5d metals with less than half filled d-shell.
Isolated hydrogen atoms absorbed on graphene are predicted to induce magnetic moments. Here we demonstrate that the adsorption of a single hydrogen atom on graphene induces a magnetic moment characterized by a ~20 meV spin-split state at the Fermi energy. Our scanning tunneling microscopy (STM) experiments, complemented by first-principles calculations, show that such a spin-polarized state is essentially localized on the carbon sublattice complementary to the one where the H atom is chemisorbed. This atomically modulated spin-texture, which extends several nanometers away from the H atom, drives the direct coupling between the magnetic moments at unusually long distances. Using the STM tip to manipulate H atoms with atomic precision, we demonstrate the possibility to tailor the magnetism of selected graphene regions.
We image simultaneously the geometric, electronic and magnetic structure of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX), to independently characterize the geometric as well as the electronic and magnetic structure of non-flat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the eletronic structure at the atomic level, and the correlation with the resultant spin spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with SP-STM alone. Using density functional theory (DFT), we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.
180 - Carsten A. Ullrich 2018
A new class of orbital-dependent exchange-correlation (xc) potentials for applications in noncollinear spin-density-functional theory is developed. Starting from the optimized effective potential (OEP) formalism for the exact exchange potential - generalized to the noncollinear case - correlation effects are added via a self-consistent procedure inspired by the Singwi-Tosi-Land-Sjolander (STLS) method. The orbital-dependent xc potentials are applied to the Hubbard dimer in uniform and noncollinear magnetic fields and compared to exact diagonalization and to the Bethe-ansatz local spin-density approximation. The STLS gives the overall best performance for total energies, densities and magnetizations, particularly in the weakly to moderately correlated regime.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا