Do you want to publish a course? Click here

The curious case of PDS 11: a nearby, >10 Myr old, classical T Tauri binary system

95   0   0.0 ( 0 )
 Added by Blesson Mathew
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results of our study of PDS 11 binary system, which belongs to a rare class of isolated, high galactic latitude T Tauri stars. Our spectroscopic analysis reveals that PDS 11 is a M2-M2 binary system with both components showing similar H-alpha emission strength. Both the components appear to be accreting, and are classical T Tauri stars. The lithium doublet Li I 6708 Angstrom, a signature of youth, is present in the spectrum of PDS 11A, but not in PDS 11B. From the application of lithium depletion boundary age-dating method and a comparison with the Li I 6708 equivalent width distribution of moving groups, we estimated an age of 10-15 Myr for PDS 11A. Comparison with pre-main sequence evolutionary models indicates that PDS 11A is a 0.4 solar mass T Tauri star at a distance of 114-131 pc. PDS 11 system does not appear to be associated with any known star forming regions or moving groups. PDS 11 is a new addition, after TWA 30 and LDS 5606, to the interesting class of old, dusty, wide binary classical T Tauri systems in which both components are actively accreting.



rate research

Read More

We present emph{Herschel} PACS observations of 8 Classical T Tauri Stars in the $sim 7-10$ Myr old OB1a and the $sim 4-5$ Myr old OB1b Orion sub-asscociations. Detailed modeling of the broadband spectral energy distributions, particularly the strong silicate emission at 10 $mu$m, shows that these objects are (pre)transitional disks with some amount of small optically thin dust inside their cavities, ranging from $sim 4$ AU to $sim 90$ AU in size. We analyzed emph{Spitzer} IRS spectra for two objects in the sample: CVSO-107 and CVSO-109. The IRS spectrum of CVSO-107 indicates the presence of crystalline material inside its gap while the silicate feature of CVSO-109 is characterized by a pristine profile produced by amorphous silicates; the mechanisms creating the optically thin dust seem to depend on disk local conditions. Using millimeter photometry we estimated dust disk masses for CVSO-107 and CVSO-109 lower than the minimum mass of solids needed to form the planets in our Solar System, which suggests that giant planet formation should be over in these disks. We speculate that the presence and maintenance of optically thick material in the inner regions of these pre-transitional disks might point to low-mass planet formation.
585 - W.F. Thi , G. Mathews , F. Menard 2010
Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [OI] and [CII] as part of the Open-time large program GASPS. We complement this with continuum data and ground-based 12CO 3-2 and 13CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [OI] line at 63 micron. The other lines that were observed, [OI] at 145 micron and [CII] at 157 micron, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [12CO]/[13CO]=69 suggests a dust mass for grains with radius < 1 mm of ~1.9 times 10^-4 Msun (total solid mass of 3 times 10^-3 Msun) and a gas mass of (0.5--5) times 10^-3 Msun. The gas-to-dust mass may be lower than the standard interstellar value of 100.
79 - JF Donati , C Moutou , L Malo 2016
Hot Jupiters are giant Jupiter-like exoplanets that orbit 100x closer to their host stars than Jupiter does to the Sun. These planets presumably form in the outer part of the primordial disc from which both the central star and surrounding planets are born, then migrate inwards and yet avoid falling into their host star. It is however unclear whether this occurs early in the lives of hot Jupiters, when still embedded within protoplanetary discs, or later, once multiple planets are formed and interact. Although numerous hot Jupiters were detected around mature Sun-like stars, their existence has not yet been firmly demonstrated for young stars, whose magnetic activity is so intense that it overshadows the radial velocity signal that close-in giant planets can induce. Here we show that hot Jupiters around young stars can be revealed from extended sets of high-resolution spectra. Once filtered-out from the activity, radial velocities of V830 Tau derived from new data collected in late 2015 exhibit a sine wave of period 4.93 d and semi-amplitude 75 m/ s, detected with a false alarm probability <0.03%. We find that this signal is fully unrelated to the 2.741-d rotation period of V830 Tau and we attribute it to the presence of a 0.77 Jupiter mass planet orbiting at a distance of 0.057 au from the host star. Our result demonstrates that hot Jupiters can migrate inwards in <2 Myr, most likely as a result of planet-disc interactions, and thus yields strong support to the theory of giant planet migration in gaseous protoplanetary discs.
Most Vega-like stars have far-infrared excess (60micron or longward in IRAS, ISO, or Spitzer MIPS bands) and contain cold dust (<~150K) analogous to the Suns Kuiper-Belt region. However, dust in a region more akin to our asteroid belt and thus relevant to the terrestrial planet building process is warm and produces excess emission in mid-infrared wavelengths. By cross-correlating Hipparcos dwarfs with the MSX catalog, we found that EF Cha, a member of the recently identified, ~10 Myr old, ``Cha-Near Moving Group, possesses prominent mid-infrared excess. N-band spectroscopy reveals a strong emission feature characterized by a mixture of small, warm, amorphous and possibly crystalline silicate grains. Survival time of warm dust grains around this A9 star is <~ 1E5 yrs, much less than the age of the star. Thus, grains in this extra-solar terrestrial planetary zone must be of second generation and not a remnant of primodial dust and are suggestive of substantial planet formation activity. Such second generation warm excess occurs around ~ 13% of the early-type stars in nearby young stellar associations.
243 - Joel H. Kastner 2012
The early-K star T Cha, a member of the relatively nearby (D ~ 100 pc) epsilon Cha Association, is a relatively old (age ~7 Myr) T Tauri star that is still sporadically accreting from an orbiting disk whose inner regions are evidently now being cleared by a close, substellar companion. We report the identification, via analysis of proper motions, serendipitous X-ray imaging spectroscopy, and followup optical spectroscopy, of a new member of the epsilon Cha Association that is very likely a low-mass companion to T Cha at a projected separation of ~38 kAU. The combined X-ray and optical spectroscopy data indicate that the companion, T Cha B (= 2M1155-79), is a weak-lined T Tauri star (wTTS) of spectral type M3 and age ~<10 Myr. The serendipitous X-ray (XMM-Newton) observation of T Cha B, which targeted T Cha, also yields serendipitous detections of two background wTTS in the Chamaeleon cloud complex, including one newly discovered, low-mass member of the Cha cloud pre-MS population. T Cha becomes the third prominent example of a nearby, old yet still actively accreting, K-type pre-MS star/disk system (the others being TW Hya and V4046 Sgr) to feature a low-mass companion at very large (12-40 kAU) separation, suggesting that such wide-separation companions may affect the conditions and timescales for planet formation around solar-mass stars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا