Do you want to publish a course? Click here

One-electron atoms in screened modified gravity

53   0   0.0 ( 0 )
 Added by Leong Khim Wong
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a large class of scalar-tensor theories that are potential candidates for dark energy, a nonminimal coupling between the scalar and the photon is possible. The presence of such an interaction grants us the exciting prospect of directly observing dark sector phenomenology in the electromagnetic spectrum. This paper investigates the behavior of one-electron atoms in this class of modified gravity models, exploring their viability as probes of deviations from general relativity in both laboratory and astrophysical settings. Building heavily on earlier studies, our main contribution is threefold: A thorough analysis finds additional fine-structure corrections previously unaccounted for, which now predict a contribution to the Lamb shift that is larger by nearly 4 orders of magnitude. In addition, they also predict a scalar-mediated photon-photon interaction, which now constrains the scalars coupling to the photon independently of the matter coupling. This was not previously possible with atomic precision tests. Our updated constraints are $log_{10}beta_m lesssim 13.4$ and $log_{10}beta_gamma lesssim 19.0$ for the matter and photon coupling, respectively, although these remain uncompetitive with bounds from other experiments. Second, we include the effects of the nuclear magnetic moment, allowing for the study of hyperfine structure and the 21 cm line, which hitherto have been unexplored in this context. Finally, we also examine how a background scalar leads to equivalence principle violations.

rate research

Read More

We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely $f(R)$ gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to $Lambda$CDM even when using a fairly small number of COLA time steps.
The one-loop partition function of the $f(R,R_{mu u}R^{mu u})$ gravity theory is obtained around AdS$_4$ background. After suitable choice of the gauge condition and computation of the ghost determinant, we obtain the one-loop partition function of the theory. The traced heat kernel over the thermal quotient of AdS$_4$ space is also computed and the thermal partition function is obtained for this theory. We have then consider quantum corrections to the thermodynamical quantities in some special cases.
65 - Xing Zhang , Wen Zhao , He Huang 2016
Screened modified gravity (SMG) is a kind of scalar-tensor theories with screening mechanisms, which can generate screening effect to suppress the fifth force in high density environments and pass the solar system tests. Meanwhile, the potential of scalar field in the theories can drive the acceleration of the late universe. In this paper, we calculate the parameterized post-Newtonian (PPN) parameters $gamma$ and $beta$, the effective gravitational constant $G_{rm eff}$ and the effective cosmological constant $Lambda$ for SMG with a general potential $V$ and coupling function $A$. The dependence of these parameters on the model parameters of SMG and/or the physical properties of the source object are clearly presented. As an application of these results, we focus on three specific theories of SMG (chameleon, symmetron and dilaton models). Using the formulae to calculate their PPN parameters and cosmological constant, we derive the constraints on the model parameters by combining the observations on solar system and cosmological scales.
The statistics of dark matter halos is an essential component of understanding the nonlinear evolution in modified gravity cosmology. Based on a series of modified gravity N-body simulations, we investigate the halo mass function, concentration and bias. We model the impact of modified gravity by a single parameter zeta, which determines the enhancement of particle acceleration with respect to GR, given the identical mass distribution (zeta=1 in GR). We select snapshot redshifts such that the linear matter power spectra of different gravity models are identical, in order to isolate the impact of gravity beyond modifying the linear growth rate. At the baseline redshift corresponding to z_S=1.2 in the standard Lambda CDM, for a 10% deviation from GR(|zeta-1|=0.1), the measured halo mass function can differ by about 5-10%, the halo concentration by about 10-20%, while the halo bias differs significantly less. These results demonstrate that the halo mass function and/or the halo concentration are sensitive to the nature of gravity and may be used to make interesting constraints along this line.
112 - Alireza Hojjati 2012
We study degeneracies between parameters in some of the widely used parametrized modified gravity models. We investigate how different observables from a future photometric weak lensing survey such as LSST, correlate the effects of these parameters and to what extent the degeneracies are broken. We also study the impact of other degenerate effects, namely massive neutrinos and some of the weak lensing systematics, on the correlations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا