Aggregation equations with fractional diffusion: preventing concentration by mixing


Abstract in English

We investigate a class of aggregation-diffusion equations with strongly singular kernels and weak (fractional) dissipation in the presence of an incompressible flow. Without the flow the equations are supercritical in the sense that the tendency to concentrate dominates the strength of diffusion and solutions emanating from sufficiently localised initial data may explode in finite time. The main purpose of this paper is to show that under suitable spectral conditions on the flow, which guarantee good mixing properties, for any regular initial datum the solution to the corresponding advection-aggregation-diffusion equation is global if the prescribed flow is sufficiently fast. This paper can be seen as a partial extension of Kiselev and Xu (Arch. Rat. Mech. Anal. 222(2), 2016), and our arguments show in particular that the suppression mechanism for the classical 2D parabolic-elliptic Keller-Segel model devised by Kiselev and Xu also applies to the fractional Keller-Segel model (where $triangle$ is replaced by $-Lambda^gamma$) requiring only that $gamma>1$. In addition, we remove the restriction to dimension $d<4$.

Download